
随着生成式人工智能(Generative
 

AI)的快速发展,
检索增强生成(Retrieval-Augmented

 

Generation,RAG)
技术已成为解决大语言模型知识静态性、幻觉问题及领
域适应性瓶颈的核心方案。本章系统解析RAG的技术
框架、实现路径与行业实践:

 

从基础理论(定义、发展脉
络与核心价值)到系统架构(检索器、生成器与增强策略
的协同机制),从关键技术(文本向量化、混合检索优化、
提示词工程)到实战部署(基于LangChain的工程实现、
企业级性能调优与容错设计)。同时,结合金融、医疗等
领域的真实案例,探讨RAG在知识更新效率、数据隐私
保护与推理可解释性上的独特优势,并针对知识淹没、
检索噪声等挑战提出技术破局思路,为开发者在效率与
安全的平衡中提供方法论支撑。
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  【教学目标】

•
 

了解RAG技术的基本定义、发展历程及其对LLM能力的增强逻辑。

•
 

了解RAG在智能客服、知识问答、法律文书生成等场景中的典型应用模式。

•
 

了解RAG技术面临的核心挑战。

•
 

熟悉RAG系统的三阶段工作流程与核心组件功能解耦。

•
 

熟悉文本向量化与混合检索策略的技术原理。

•
 

掌握使用LangChain框架构建端到端RAG系统。

5.1 RAG技术概述

  本节以“技术原理→应用场景→落地价值”为主线,结合行业案例与实操演示,系统解析

RAG技术的核心逻辑及其对生产生活的实际价值。内容设计贴合应用型学生特点,并注重

理论联系实际进行讲解。

5.1.1 RAG定义与实用价值

1.
 

RAG的定义

检索增强生成(Retrieval-Augmented
 

Generation,
 

RAG)是一种创新技术,它巧妙地将

信息检索与文本生成能力融合。其核心理念如下:
 

当大语言模型(LLM)需要回答用户问题

时,它不再仅仅依赖自身记忆,而是会像一个研究者一样,首先通过检索模块从外部庞大的

知识库中快速查找并获取相关信息片段。随后,这些检索到的准确资料会作为额外上下文,
输入给生成模型。模型基于这些“最新查阅的资料”和原始问题,生成更加精确、可靠的

答案。
通俗来说,RAG

 

赋予大语言模型一种“先查阅资料,再撰写回答”的能力,使其能像“学
者”般严谨,而非仅凭记忆回答。

2.
 

RAG的实用价值

RAG技术因其独特优势,有效解决了传统生成式
 

AI
 

面临的两大核心挑战。

1)
 

解决知识更新滞后问题

传统大型
 

AI
 

模型一旦训练完成,其知识便趋于固化,难以快速捕捉新发生的信息和行

业动态(例如,某些模型可能仅掌握到2023年年末的数据)。这种“时间冻结”特性严重限制

了它们在快速变化的现实世界中的应用。

RAG通过解耦模型的“生成能力”与“知识存储”,构建了一个动态、可实时更新的知识

体系。它将大模型的通用理解与外部知识库的最新信息相结合,实现“即插即用”。这意味

着企业能迅速响应政策变化或技术迭代,其知识更新效率远超传统模型的微调方式。

2)
 

显著提升专业领域回答的准确性

大语言模型在生成内容时,常出现“幻觉”现象———即编造看似合理但实际错误的信息,
这在专业领域尤为突出。例如,在复杂的医疗诊断中,未增强的大语言模型可能给出高错误

率的建议,这源于其训练数据的广泛性与专业知识深度之间的矛盾。

RAG通过引入三重校验机制,极大地提升了生成内容的可靠性:
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(1)
 

权威知识锚定:
 

强制模型从预设的专业文档库(如行业标准、官方指南)中提取信

息,杜绝随意发挥,确保信息来源权威。
(2)

 

混合检索策略:
 

结合语义向量检索(捕捉深层关联)与关键词检索(锁定精准术

语)。例如,在医疗中可同时匹配疾病症状描述和其对应的国际疾病编码,提升检索的全面

性和准确性。
(3)

 

提示词工程约束:
 

通过结构化指令(如“严格依据××标准回答”)引导生成方向,
确保输出内容严格遵循特定规则或要求,进一步提高精确性和合规性。

传统生成式AI与RAG增强系统对比如表5.1所示。

表5.1 传统生成式AI与RAG增强系统对比

维  度 传统生成式AI RAG增强系统

知识更新周期 可能长达数月(依赖模型参数) 实时(分钟级索引更新)
专业领域准确性 错误率较高(依赖模型记忆) 外部知识驱动,错误率大幅降低

部署成本 微调在算力方面的消耗大 轻量级知识库维护

可解释性 黑箱操作,决策路径模糊 检索结果可溯源,符合审计要求

5.1.2 RAG技术发展历程

检索增强生成(RAG)技术并非一夜建成,而是经历了从概念萌芽、模型确立,到持续优

化,最终迈向多模态与智能体驱动的演进历程。

1.
 

早期探索与基础
 

RAG阶段
 

(2017—2020年)

1)
 

萌芽阶段(2017—2019年)
在

 

RAG
 

概念正式提出前,研究者已开始探索检索与生成结合。例如,Google
 

Research
 

的
 

REALM
 

模型在预训练阶段就引入了检索机制,能高效地从大规模文本库(如百度百科)
中检索相关文档,以此增强语言模型的理解能力。

2)
 

RAG模型正式提出(2020年)

2020年,Meta
 

AI(当时的
 

Facebook
 

AI
 

Research)的团队正式发布了
 

RAG
 

模型,详细

阐述其原理和优势。这标志着
 

RAG
 

技术的诞生,迅速引起广泛关注,并在开放域问答等任

务上超越了当时的先进生成模型。

2.
 

优化、扩展与标准化阶段(2020—2022年)

RAG模型提出后,研究焦点转向性能提升和应用拓展。

1)
 

检索器优化

(1)
 

DPR(Dense
 

Passage
 

Retriever,2020):
 

专为开放域问答设计,平衡了检索的精确性

与效率。
(2)

 

ANCE(Approximate
 

Nearest
 

Neighbor
 

Negative
 

Contrastive
 

Learning,2021):
 

通

过融合近似最近邻搜索和对比学习,大幅降低了大规模检索的延迟,是检索工程化的重要

突破。

2)
 

生成器优化

(1)
 

T5(Text-to-Text
 

Transfer
 

Transformer,2020):
 

统一了自然语言处理任务为“文
本输入-文本输出”的范式,简化了多任务适配。
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(2)
 

提示学习(Prompt
 

Learning):
 

通过精心设计的提示词,更有效地引导生成模型输

出符合预期的答案。
(3)

 

FiD(Fusion-in-Decoder):
 

一种微调方法,让生成器能同时处理多个检索到的文档,
并在解码时进行多文档间的注意力计算,综合考量信息。

3.
 

多模态RAG阶段(2022年至今)
随着多模态大模型的兴起,RAG

 

技术也实现了跨越式发展,不再局限于文本,开始处理

图像、视频、音频等多种数据类型。
(1)

 

Flamingo(DeepMind,2022):
 

作为视觉语言模型的代表,Flamingo
 

能同时接收图

像和文本输入,并生成文本输出。它在多种图像和视频任务上表现出色,尤其在少样本学习

方面展现了强大能力。
(2)

 

OmniSearch:
 

这是首个自适应多模态检索规划智能体。OmniSearch
 

模拟人类解

决复杂问题的认知过程,能将复杂问题分解为一系列子问题,并根据实时检索反馈动态调整

策略,在多模态理解与决策方面迈出重要一步。

5.1.3 RAG应用场景

RAG在不同层面所应对的挑战如下。

1)
 

行业痛点

(1)
 

知识的时效性问题(Knowledge
 

Staleness)。
痛点:

 

许多行业,如金融、法律、科技等,信息更新速度快,而预训练的大语言模型的知

识截止日期通常较早,无法获取最新的信息,导致生成的内容可能过时或不准确。

RAG解决方案:
 

RAG
 

通过在生成答案之前实时检索最新的行业报告、新闻、研究论文

等外部知识,确保模型能够利用最新的信息来回答用户的问题,提供更具时效性的答案。
(2)

 

领域知识的不足(Lack
 

of
 

Domain-Specific
 

Knowledge)。
痛点:

 

通用大语言模型虽然拥有广泛的知识,但在特定行业或企业的专业领域知识方

面可能不足,难以回答需要深入专业知识的问题。

RAG解决方案:
 

RAG
 

可以接入行业特定的知识库,如产品文档、内部规程、专业术语

表等。通过检索这些专业知识,模型能够生成更专业、更准确的回答,满足行业用户的特定

需求。
(3)

 

生成内容的事实性问题(Hallucinations
 

and
 

Factual
 

Errors)。
痛点:

 

大语言模型有时会生成听起来合理但不真实的信息(即“幻觉”),这在需要高度

准确性的行业(如医疗、法律)是不可接受的。

RAG解决方案:
 

RAG
 

通过检索外部的权威信息作为生成答案的依据,可以显著降低

模型产生幻觉的风险。生成的答案有检索到的证据支持,提高了其可信度和准确性。
(4)

 

复杂问题的理解和回答(Understanding
 

and
 

Answering
 

Complex
 

Questions)。
痛点:

 

某些行业的问题可能非常复杂,涉及多个知识点和推理步骤,通用大语言模型可

能难以准确理解和生成全面的答案。

RAG解决方案:
 

RAG
 

可以通过对复杂问题进行分解,并检索多个相关的文档片段作

为上下文,帮助大语言模型更好地理解问题的各个方面,并生成更完整、更深入的答案。
(5)

 

数据孤岛和信息分散(Data
 

Silos
 

and
 

Information
 

Fragmentation)。
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痛点:
 

许多企业内部的知识分散在不同的文档、数据库和系统中,员工难以快速找到所

需的信息,影响工作效率。

RAG解决方案:
 

RAG
 

可以连接到各种不同的数据源,将分散的知识整合起来,并通过

自然语言查询的方式,让员工能够更方便地获取所需的信息,打破信息孤岛。
(6)

 

定制化和个性化需求(Customization
 

and
 

Personalization
 

Requirements)。
痛点:

 

不同行业或企业有其特定的业务流程、术语和数据格式,通用大语言模型难以直

接满足这些定制化的需求。

RAG解决方案:
 

RAG
 

可以根据特定行业或企业的需求,接入特定的知识库和数据,并
进行相应的定制化开发,以更好地满足其个性化的应用场景。

2)
 

背景痛点

(1)
 

缺乏上下文的生成(Generation
 

Without
 

Sufficient
 

Context)。
痛点:

 

纯粹的生成模型在没有充分上下文的情况下,可能生成模糊、不相关或过于宽泛

的答案。

RAG解决方案:
 

RAG
 

通过检索与用户查询相关的背景信息,为生成模型提供了更丰

富的上下文,使其能够生成更具体、更相关的答案。
(2)

 

模型知识更新的成本和难度(Cost
 

and
 

Difficulty
 

of
 

Model
 

Knowledge
 

Updates)。
痛点:

 

重新训练大语言模型以更新其知识库,需要巨大的计算资源和时间成本,且难以

频繁进行。

RAG解决方案:
 

RAG
 

将知识更新的负担从模型本身转移到外部知识库。更新知识库

中的文档比重新训练模型要高效和经济得多。
(3)

 

模型的可解释性和可追溯性(Interpretability
 

and
 

Traceability
 

of
 

Model
 

Output)。
痛点:

 

纯粹的生成模型的决策过程往往难以解释,用户难以判断生成答案的依据是否

可靠。

RAG解决方案:
 

RAG
 

提供了生成答案的证据来源(即检索到的文档片段),增强了模

型输出的可解释性和可追溯性,用户可以验证答案的依据。
(4)

 

处理长文本的挑战(Challenges
 

in
 

Processing
 

Long
 

Texts)。
痛点:

 

大语言模型的上下文窗口有限,难以直接处理和理解非常长的文档。

RAG解决方案:
 

RAG
 

可以将长文档分割成更小的语义单元(Chunk),并检索与用户

查询最相关的Chunk作为上下文,从而有效地处理长文本信息。
(5)

 

用户意图的准确理解(Accurate
 

Understanding
 

of
 

User
 

Intent)。
痛点:

 

用户提出的问题可能存在歧义或隐含的意图,纯粹的检索或生成模型可能难以

准确把握。

RAG解决方案:
 

RAG
 

结合了检索和生成的能力,可以通过检索相关信息来帮助模型

更好地理解用户的真实意图,并生成更符合用户需求的答案。
由于RAG

 

巧妙地将信息检索与文本生成模型相结合,不仅提升了生成内容的质量和

可靠性,更在诸多行业展现出巨大的应用潜力。下面将深入探讨
 

RAG
 

的各种应用场景,尤
其要关注最新的行业动态。

1.
 

智能客服与客户支持

在客户服务领域,RAG
 

技术的应用正在彻底改变传统的客服模式。传统的
 

AI
 

聊天机
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器人往往依赖于预编程的回答,对于复杂或新颖的问题常常显得力不从心。而基于
 

RAG
 

的聊天机器人则不同,它们能够实时检索企业的知识库、产品文档、常见问题解答库及过往

的客户交互记录等信息源,为客户提供准确且上下文相关的回复。
例如,在电子商务行业,客户在购物过程中可能会对产品的特性、使用方法、售后服务等

方面提出各种问题。RAG
 

聊天机器人可以迅速从产品手册和售后政策中检索相关内容,并
结合自然语言生成技术,以清晰易懂的方式回答客户的疑问。在金融领域,当客户咨询关于

贷款产品、投资策略或账户操作等复杂问题时,RAG
 

技术能够确保客服系统提供合规且最

新的信息,增强客户对金融机构的信任。
全球知名的商业信息和内容技术提供商汤森路透,就采用了基于

 

GPT-4
 

的
 

RAG
 

聊天

机器人,帮助客户做出更明智的决策。实践证明,该聊天机器人高效且经济,有效减少了模

型幻觉问题,为客户支持树立了新的标杆。

2.
 

医疗保健行业

在医疗保健领域,准确和及时的信息对于患者护理和医疗决策至关重要。RAG
 

技术在

这一领域有着广泛的应用前景。
对于患者而言,他们可以通过

 

RAG
 

驱动的医疗咨询平台,询问关于疾病症状、治疗方

案、药物副作用、康复时间等问题。平台能够检索权威的医学文献、临床指南、研究报告及患

者教育资料,为患者提供详细且科学的解答,帮助患者更好地理解自身病情和治疗选择。对

于医疗专业人员,RAG
 

技术可以成为强大的辅助工具。在诊断过程中,医生可以利用
 

RAG
 

系统检索类似病例、最新的医学研究成果及专家共识,为诊断和治疗方案的制定提供更多参

考依据。在制定复杂疾病的治疗计划时,系统能够快速整合多源信息,帮助医生权衡不同治

疗方案的利弊,做出更精准的决策。

3.
 

教育培训

在教育领域,RAG
 

技术为个性化学习和智能辅导带来了新的可能性。学生在学习过程

中常常会遇到各种问题,无论是关于课程内容、作业难题还是考试复习。RAG
 

驱动的智能

学习助手可以根据学生的问题,检索课程教材、学术论文、在线学习资源及过往的答疑记录,
为学生提供详细的解答和指导。

例如,在高等教育中,学生在撰写论文时可能需要对特定主题进行深入研究。RAG
 

系

统可以帮助学生快速检索相关的学术文献,并生成文献综述的初稿,引导学生进一步探索和

分析。在职业培训中,学员可以通过
 

RAG
 

平台获取行业最新动态、技能操作指南及案例分

析,加速学习进程,提升培训效果。

4.
 

知识管理与企业协作

在企业内部,知识管理是提高工作效率和促进创新的关键因素。RAG
 

技术可以帮助企

业构建智能知识管理系统,员工能够通过自然语言查询,快速获取企业内部的各种文档、报
告、项目经验、最佳实践等知识资产。

当员工需要了解公司的某项政策、查找特定项目的相关资料或者借鉴以往类似项目的

经验时,RAG
 

系统能够迅速从企业知识库中检索出相关信息,并以易于理解的方式呈现给

员工。这不仅节省了员工查找信息的时间,还促进了企业内部知识的共享和传承,提升了整

体协作效率。
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5.
 

内容创作与营销

对于内容创作者和营销人员来说,RAG
 

技术是提升工作效率和创作质量的有力工具。
在内容创作过程中,创作者可以利用

 

RAG
 

系统检索行业最新趋势、市场数据、竞争对手动

态及热门话题,为创作提供丰富的素材和灵感。
在制定营销文案时,RAG

 

系统可以分析过往成功营销案例,结合当前市场趋势和目标

受众特点,生成具有吸引力的文案初稿。营销人员还可以通过
 

RAG
 

技术优化电子邮件营

销活动、社交媒体内容策划及搜索引擎优化(SEO)策略,提高营销活动的针对性和效果。

6.
 

旅游与酒店业

在旅游和酒店行业,RAG
 

技术可以为游客提供个性化的旅行规划和信息服务。游客在

计划旅行时,可以通过
 

RAG
 

聊天机器人咨询关于旅游目的地的景点介绍、美食推荐、住宿

选择、交通指南等问题。
聊天机器人能够检索旅游攻略、酒店评价、当地活动信息及实时交通数据,为游客量身

定制旅行计划,并提供实时更新的信息。在酒店预订过程中,客人可以通过
 

RAG
 

系统了解

酒店的房型、设施、优惠活动及周边配套服务,帮助他们做出更合适的选择。

7.
 

制造业与工业互联网

在制造业和工业互联网领域,RAG
 

技术也开始展现出独特的价值。例如,在智能工厂

中,当工人或技术人员在设备维护、生产流程优化等方面遇到问题时,可以借助
 

RAG
 

系统

查询设备手册、维修记录、生产工艺标准等信息,快速解决问题,减少生产停机时间。
树根互联股份有限公司正在探索将

 

RAG
 

技术应用于智能客服、数字员工及工业机器

人等领域,通过结合大模型技术和高效检索系统,推动工业互联网数字化转型服务的创新

发展。

RAG技术作为人工智能领域的一项重要创新,正在多个行业中发挥着重要作用,为各

行业的数字化转型和智能化升级提供了强大的支持。随着技术的不断发展和完善,RAG
 

有

望在更多领域实现更深入的应用,为人们的生活和工作带来更多便利和创新。

5.2 RAG系统核心架构

5.2.1 RAG系统三大核心组件

RAG系统由3个核心组件构成:
 

检索器(Retriever)、生成器(Generator)和知识库

(Knowledge
 

Base)。每个组件都扮演着重要的角色,共同协作以实现高质量的文本生成。

1.
 

检索器(Retriever)
检索器是RAG系统的第一个关键组件,负责从外部知识库中找到与用户查询最相关

的信息。它的主要任务是高效、准确地识别并提取与给定问题或需求相关的知识片段。检

索器的性能直接影响RAG系统最终生成的内容质量。

1)
 

检索器的核心功能

检索器的核心功能如下:
 

接收用户输入的自然语言查询,以理解其查询意图;
 

通过预

先构建的倒排索引、向量索引等常见索引结构加速知识查找过程;
 

评估知识库中各文档或
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知识片段与用户查询的相关程度;
 

依据相关性得分对检索到的知识进行排序及筛选,挑出

最相关部分;
 

最后将筛选后的知识片段返回给生成器,作为生成文本的依据。

2)
 

检索器的实现方式

检索器的实现方式多种多样,可以根据具体的应用场景和知识库的特点选择合适的方

法。检索器的主要实现方式包括如下3种。
(1)

 

基于关键词的检索:
 

依赖于关键词匹配,通过查找用户查询中包含的关键词在知

识库中出现的频率和位置来确定相关性。其优点在于实现简单、速度快,缺点是无法理解语

义信息,且容易受到关键词歧义的影响,导致检索结果可能不准确。
(2)

 

基于向量相似度的检索:
 

将用户查询和知识库中的文档都转换为向量表示,然后

通过计算向量之间的相似度来衡量相关性。其优点在于能够捕捉语义信息,对关键词的变

体和同义词具有较好的适应性,检索结果更准确;
 

缺点是需要预先训练或使用现成的词向

量模型,计算量较大。
(3)

 

混合检索:
 

结合了基于关键词的检索和基于向量相似度的检索的优点,通过一定

的策略将两种方法的检索结果进行融合,能够兼顾检索的速度和准确性,适用于复杂的应用

场景。

3)
 

检索器的评估指标

(1)
 

准确率(Precision):
 

检索到的相关文档占所有检索到的文档的比例。
(2)

 

召回率(Recall):
 

检索到的相关文档占所有知识库中相关文档的比例。
(3)

 

F1值:
 

准确率和召回率的调和平均数,综合评价检索器的性能。
(4)

 

平均精度均值(MAP):
 

衡量检索系统在多个查询下的平均检索精度。

2.
 

生成器(Generator)
生成器是RAG系统的第二个核心组件,负责根据检索器提供的知识片段和用户查询

生成自然流畅的文本。生成器的主要任务是将检索到的信息整合到生成的文本中,确保内

容的相关性、准确性和可读性。

1)
 

生成器的核心功能

生成器的核心功能如下。
(1)

 

接收用户查询和检索结果:
 

接收用户输入的自然语言查询及检索器返回的相关知

识片段。
(2)

 

理解上下文信息:
 

理解用户查询的意图及检索到的知识片段的含义。
(3)

 

生成文本:
 

根据用户查询和检索到的知识片段,生成自然流畅的文本,满足用户的

需求。
(4)

 

控制生成质量:
 

控制生成文本的风格、长度、准确性等,确保生成的内容符合要求。

2)
 

生成器的实现方式

生成器通常基于Transformer架构的大语言模型实现。这些模型经过预训练,具有强

大的文本生成能力。例如,GPT-4便是常用的生成器模型,其以强大的生成能力和通用性

而闻名。

3)
 

生成器的评估指标

BLEU用于衡量生成文本与参考文本间的相似度,ROUGE用于聚焦于衡量二者间的

召回率,METEOR则综合考量准确率与召回率,并对词序进行优化。最后还有人工评估方
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式的指标,该指标主要通过人工评价生成文本在流畅性、相关性及准确性等方面的表现。

3.
 

知识库(Knowledge
 

Base)
知识库是RAG系统的第三个核心组件,是存储和管理外部知识的场所。外部知识可

以是任何形式的结构化或非结构化数据,例如,文档集合(如PDF文档、Word文档等)、数据

库(如关系数据库、非关系数据库等)、以图形结构表示知识的知识图谱等。

1)
 

知识库的核心功能

知识库的核心功能如下。
(1)

 

存储知识:
 

存储各种形式的知识,并提供高效的访问接口。
(2)

 

知识更新:
 

支持知识的更新和维护,确保知识库中的信息是最新的。
(3)

 

知识管理:
 

提供知识管理工具,方便用户浏览、搜索、编辑和组织知识。

2)
 

知识库的类型

根据知识的结构化程度,知识库可以分为以下3类。
(1)

 

非结构化知识库:
 

存储非结构化的文本数据,如文档集合、网页等。
(2)

 

半结构化知识库:
 

存储半结构化的数据,如XML、JSON等。
(3)

 

结构化知识库:
 

存储结构化的数据,如关系数据库、知识图谱等。

3)
 

知识库的构建方法

(1)
 

手动构建:
 

通过人工录入或编辑知识,适用于规模较小、知识结构化的知识库。
(2)

 

自动构建:
 

通过网络爬虫、文本挖掘等技术自动提取知识,适用于规模较大、知识

来源广泛的知识库。
(3)

 

半自动构建:
 

结合了手动构建和自动构建的优点,通过人工审核和修正自动提取

的知识,提高知识的质量。

5.2.2 RAG系统工作流程

RAG系统的工作流程是一个高度标准化的“检索—生成”链路,涵盖从用户提问到答案

输出的全生命周期。本节将通过流程图分解与实际案例解析,详细阐述其核心步骤与技术

细节,其流程图如图5.1所示。

图5.1 RAG系统工作流程图
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1.
 

全流程概述

1)
 

输入与查询处理

(1)
 

用户输入:
 

接收用户的自然语言查询(如问题、指令或对话内容)。
(2)

 

查询理解与重构:
 

对输入进行语义解析,提取关键意图和实体(如命名实体识别、
关键词提取),可能通过查询扩展或重写优化检索效果。

2)
 

知识检索

文档/知识库准备:
 

外部知识库可以是结构化数据(如数据库)、非结构化文本(如网页、

PDF文档)或实时更新的内容(如新闻、行业报告),数据尽可能经过预处理,用以支持高效

检索。

3)
 

上下文增强

(1)
 

结果筛选与排序:
 

根据相关性评分对检索结果去重、过滤低质量文档,保留Top-K
(如3~5条)最相关片段。

(2)
 

上下文拼接:
 

将检索到的文档片段与原始查询组合为增强输入(Prompt)。

4)
 

生成

大语言模型推理:
 

将增强后的内容输入生成模型(如GPT-4),并基于检索内容生成最

终回答。模型需具备对上下文的理解能力,并平衡检索内容与自身知识。

5)
 

后处理与反馈(可选)
(1)

 

结果验证:
 

对生成内容进行事实性检查(Fact-Checking)或引用标注(如标记回答

中引用的文档片段)。
(2)

 

用户反馈闭环:
 

收集用户对回答质量的评价,优化检索策略或调整生成参数(如动

态调整Top-K值)。

2.
 

案例:
 

医疗问答系统流程

1)
 

用户提问

“妊娠期糖尿病患者应该如何控制血糖?”

2)
 

预处理

实体抽取:
 

妊娠期糖尿病、控制血糖。
问题向量化:

 

通过BGE-M3模型生成1024维向量。

3)
 

检索(Top-3)
《中国妊娠期糖尿病诊疗指南(2023)》:

 

建议饮食控制与胰岛素治疗。
美国糖尿病协会(ADA)指南:

 

推荐每日血糖监测。
某三甲医院临床研究:

 

运动干预对血糖控制的影响。

4)
 

生成

根据以下文档回答问题:
 

[文档1]妊娠期糖尿病患者需每日监测空腹血糖……
[文档2]ADA建议碳水化合物摄入量控制在总热量的40%以下……
问题:

 

妊娠期糖尿病患者应该如何控制血糖?

5)
 

生成结果

“建议通过饮食控制(如限制碳水化合物摄入)、每日血糖监测,并遵医嘱使用胰岛素治

疗。[来源:
 

指南1,指南2]”
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6)
 

后处理

NLI验证:
 

答案与文档无矛盾。
敏感信息过滤:

 

无敏感内容。

5.3 RAG关键技术解析

  RAG系统的核心技术围绕检索增强生成展开,其核心在于将大规模预训练语言模型与

外部知识检索结合,解决传统生成模型的幻觉问题。本节将深入剖析 RAG的关键技术

模块。

5.3.1 文本向量化

文本向量化是RAG系统的基石,其目标是将自然语言转换为机器可理解的数值向量。
根据向量表示方式的不同,主要分为稠密向量(Dense

 

Vector)与稀疏向量(Sparse
 

Vector)
两类模型。两者的设计理念、技术特点与应用场景存在显著差异。

1.
 

稠密向量模型

稠密向量模型通过深度神经网络生成低维、连续、稠密的向量表示,捕捉文本的深层语

义信息。

1)
 

核心原理

神经网络架构:
 

基于Transformer的编码器(如BERT、RoBERTa)。
训练目标:

 

通过掩码语言建模(MLM)或对比学习(Contrastive
 

Learning),使语义相近

的文本在向量空间中距离更近。
输出维度:

 

通常为128~1024维,每个维度代表抽象的语义特征。

2)
 

典型模型

在稠密向量模型应用中,不同模型各有优势,BERT
 

凭借双向编码捕捉上下文依赖,适
用于通用语义匹配;

 

Sentence-BERT
 

经句子优化,可快速计算相似度,助力检索与聚类;
 

BGE-M3
 

支持多语言多粒度嵌入,服务跨语言检索;
 

E5
 

基于对比学习,能增强语义区分,用
于问答与重排序,如表

 

5.2所示。

表5.2 稠密向量模型

模
 

型
 

名
 

称 特  点 适
 

用
 

场
 

景

BERT 双向编码,捕捉上下文依赖 通用语义匹配

Sentence-BERT 针对句子的优化,支持快速相似度计算 检索、聚类

BGE-M3 多语言、多粒度(词/句/段)嵌入 跨语言检索

E5 基于对比学习,增强细粒度语义区分能力 问答、重排序(Rerank)

3)
 

代码示例(Sentence-BERT)

  import
 

numpy
 

as
 

np
from

 

sentence_transformers
 

import
 

SentenceTransformer
try 
  model

 

=
 

SentenceTransformer "sentence-transformers all-mpnet-base-v2" 
  sentences

 

=
 

 "糖尿病需控制饮食" 
 

"Insulin
 

is
 

used
 

to
 

treat
 

diabetes " 
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    embeddings
 

=
 

model encode sentences 
  print "向量维度 " 

 

embeddings shape 
  

#
 

输出  2 768 
  cosine_similarity

 

=
 

np dot embeddings 0  
 

embeddings 1  
 

 
 

 np linalg norm embeddings
 0  

 

*
 

np linalg norm embeddings 1   
  print "余弦相似度 " 

 

cosine_similarity 
except

 

Exception
 

as
 

e 
  print f"出现错误 

 

 e " 
 
余弦相似度公式的详细介绍如下。
对于两个向量A 和B,余弦相似度定义为

cosine_similarity(A,B)=
A·B

‖A‖‖B‖
其中,A·B 是向量A 和B 的点积(内积),计算公式为

A·B=∑
n

i=1
AiBi

其中,Ai 和Bi 分别是向量A 和B 的第i个分量,n 是向量的维度。

‖A‖和‖B‖分别是向量A 和B 的欧几里得范数(模),计算公式为

‖A‖= ∑
n

i=1
A2i, ‖B‖= ∑

n

i=1
B2i

  4)
 

优势与局限

稠密向量模型的优势是语义理解能力强,能够捕捉近义词、反义词以及上下文依赖关

系,且泛化能力良好,适用于未登录词和多语言场景,但其存在计算资源需求高(模型参数量

达百兆至千兆级)及可解释性差(向量维度难以直观解释)的局限。

2.
 

稀疏向量模型

稀疏向量模型基于词袋(Bag-of-Words)假设,通过统计方法生成高维、离散、稀疏的向

量表示,强调显式关键词匹配。

1)
 

核心原理

稀疏向量模型的核心原理是通过词频统计方法(如
 

TF-IDF、BM25
 

等)构建高维稀疏向

量,其维度与词典规模一致且大部分元素为零。

2)
 

典型模型

在稀疏向量模型的实践中,不同模型各有特性与适用场景。TF-IDF
 

简单快速,将
词频统计用于关键词检索、文本分类;

 

BM25
 

优化文档长度影响,适配搜索引擎与短文

本检索;
 

SPLADE
 

作为神经稀疏模型,可动态扩展查询词,助力自适应检索,如表
 

5.3
所示。

表5.3 稀疏向量模型

模
 

型
 

名
 

称 特  点 适
 

用
 

场
 

景

TF-IDF 简单快速,依赖词频统计 关键词检索、文本分类

BM25 优化文档长度影响,支持长尾词匹配 搜索引擎、短文本检索

SPLADE 神经稀疏模型,动态扩展查询词 领域自适应检索
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  3)
 

代码示例(以BM25为例)

  from
 

rank_bm25
 

import
 

BM25Okapi
import

 

jieba
#

 

中文分词
corpus

 

=
 

 "糖尿病需控制饮食" 
 

"胰岛素用于治疗糖尿病" 
tokenized_corpus

 

=
 

 list jieba cut doc  
 

for
 

doc
 

in
 

corpus 
#

 

构建
 

BM25
 

模型
bm25

 

=
 

BM25Okapi tokenized_corpus 
query

 

=
 

list jieba cut "糖尿病治疗"  
scores

 

=
 

bm25 get_scores query 
print "BM25

 

得分 " 
 

scores 
 

4)
 

优势与局限

稀疏向量模型(如BM25)的优势在于计算效率高,适合实时检索场景,且可解释性强,
能通过关键词匹配得分直观反映相关性;

 

其局限性在于语义捕捉能力较弱,难以处理近义

词、多义词等语义变化(例如,“苹果”无法区分是指水果还是公司),同时高维稀疏向量会导

致存储和计算资源消耗显著增加,影响大规模应用的效率。

3.
 

混合检索模型

为结合两类模型的优势,工业界常采用稠密+稀疏的混合检索模型。

1)
 

实现方式

并行检索:
 

分别使用稠密模型和稀疏模型召回候选文档。
结果融合:

 

通过加权得分、交叉编码器重排序或神经网络融合层,整合两种模型的召回

结果。

2)
 

代码示例(混合检索)

  import
 

numpy
 

as
 

np
#

 

假设已获得稠密检索得分dense_scores和BM25得分bm25_scores
dense_scores

 

=
 

np array  1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10  
bm25_scores

 

=
 

np array  10 
 

9 
 

8 
 

7 
 

6 
 

5 
 

4 
 

3 
 

2 
 

1  
hybrid_scores

 

=
 

0 6
 

*
 

dense_scores
 

+
 

0 4
 

*
 

bm25_scores
 

    #
 

加权融合
top_indices

 

=
 

np argsort hybrid_scores    -1   10 
  

#
 

取Top-10
print top_indices 
 

5.3.2 检索优化策略:
 

混合检索(BM25+向量)

混合检索通过结合稀疏检索(BM25)与稠密检索(向量模型)的优势,可以显著提升短

文本场景下的召回率与准确率。

1.
 

混合检索的概念

混合检索模型通过并行执行稀疏检索(如BM25)与稠密向量检索,分别获取关键词匹

配和语义相关的候选结果,对两者分数归一化后按权重融合,最终去重并截取Top-K结果,
在短文本场景下兼顾精准匹配与语义泛化能力,显著提升搜索效果。

2.
 

混合检索优势

(1)
 

召回率提升:
 

BM25覆盖精确匹配结果,向量模型补充语义相关结果。
(2)

 

准确率优化:
 

通过分数融合过滤噪声,保留高置信度文档。
(3)

 

领域鲁棒性:
 

降低对单一模型的依赖,适配不同行业场景(医疗、法律等)。
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5.3.3 生成器优化技巧:
 

提示词工程与上下文融合

在RAG系统中,生成器的核心任务是将检索到的知识片段与用户问题深度融合,生成

准确、流畅的答案。本节将深入探讨提示词工程与上下文融合两大关键技术,解析其优化策

略与实现方法。

1)
 

生成器的性能瓶颈

(1)
 

信息过载:
 

检索结果过长导致模型注意力分散。
(2)

 

知识冲突:
 

多文档间存在矛盾信息(如新旧指南差异)。
(3)

 

语义偏差:
 

生成答案偏离检索内容,产生“幻觉”。

2)
 

优化目标

(1)
 

精准性:
 

确保答案与检索文档高度一致。
(2)

 

可解释性:
 

标注答案来源,增强可信度。
(3)

 

可控性:
 

通过参数约束生成风格(如专业/口语化)。

1.
 

提示词工程:
 

引导模型聚焦关键信息

提示词工程通过设计输入模板,明确指导生成模型的行为,其核心在于结构化上下文组

织与显式指令控制,提示词常用引导模板如表5.4所示。

表5.4 常用引导模板

模
 

板
 

类
 

型 结
 

构
 

示
 

例 适
 

用
 

场
 

景

指令式  
“你 是 一 名 医 生,根 据 以 下 医 学 指 南 回 答 问 题:

 

{context}。问 题:
 

{question}”
专业领域问答

问答式  “文档:
 

[Doc1]A…[Doc2]B…问:
 

{question}? 答:
 

” 多文档推理

思维链  
“先分析原因,再给出建议。文档:

 

{context}。问题:
 

{question}。逐步
思考:

 

” 复杂逻辑推理

结构化输出 “生成JSON:
 

{'answer':'… ','sources':[…]}” API调用

2.
 

上下文融合:
 

知识的高效集成策略

上下文融合旨在将检索文档的关键信息无缝嵌入生成过程,解决长文本信息丢失问题,
上下文融合主流技术方案如表5.5所示。

表5.5 上下文融合主流技术方案

方
 

法
 

名
 

称 原  理 优 缺 点

Concatenation 简单拼接问题和文档 易实现,但长文本效果差

FiD
各文档独立编码,解码时通过交叉注意力聚
合信息

处理长文本优,计算成本高

FLARE
迭代生成:

 

先预测答案需补充的知识,动态
检索并融合

精准聚焦,延迟高

HierarchicalFusion 分层处理:
 

先摘要文档,再融合摘要 平衡效率与效果,依赖摘要质量

3.
 

参数调优:
 

平衡生成质量与多样性

在自然语言生成任务中,参数调优需在生成质量(准确性、连贯性)与多样性(创新性、丰
富性)间寻求平衡。通过调整温度参数(如temperature=0.3增强确定性,temperature=
1.0提升随机性)、核采样阈值(top_p=0.9限制候选词范围)及重复惩罚(repetition_
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penalty=1.2抑制冗余),可对生成内容进行精细控制。例如,低温度结合束搜索(num_

beams=4)可提升逻辑严谨性,适用于技术文档生成;
 

而高温度配合随机采样(do_sample=
True)则适合创意文本创作。需根据任务需求动态调整参数组合,如客服对话优先质量(低
温度+低top_p),故事续写侧重多样性(高温度+高top_p),最终实现输出结果的最优权

衡,如表5.6所示。

表5.6 常见调优参数

参  数 作 用 域 典 型 值 影  响

temperature 采样策略 0.3(严谨)
 

值越低,输出越确定;
 

值越高,越多样

top_p 核采样 0.9 从累计概率前p的token中采样,过滤离谱选项

max_length 生成长度 512 限制最大输出长度,防止无关内容

repetition_penalty 重复惩罚 1.2 抑制重复短语生成

示例代码如下(参数配置):
 

  from
 

transformers
 

import
 

GenerationConfig 
 

AutoModelForCausalLM 
 

AutoTokenizer
#

 

初始化tokenizer和 model
tokenizer

 

=
 

AutoTokenizer from_pretrained "gpt2" 
model

 

=
 

AutoModelForCausalLM from_pretrained "gpt2" 
#

 

准备输入
input_text

 

=
 

"Once
 

upon
 

a
 

time"
inputs

 

=
 

tokenizer input_text 
 

return_tensors="pt" 
#

 

配置生成参数
generation_config

 

=
 

GenerationConfig 
  temperature=0 3 
  top_p=0 9 
  max_new_tokens=300 
  num_beams=4 
  do_sample=True 
  repetition_penalty=1 2 
  early_stopping=True
 
#

 

生成文本
output

 

=
 

model generate **inputs 
 

generation_config=generation_config 
#

 

解码输出
output_text

 

=
 

tokenizer decode output 0  
 

skip_special_tokens=True 
print output_text 
 

5.4 项目举例:
 

医学领域RAG系统的实现

  本节将以LangChain框架为核心,介绍实现一个完整的RAG系统,覆盖环境配置、代
码解析,具体实验操作请参考配套资料“5.5本章实验:

 

基于LangChain的医学领域RAG
系统的实现”Word文件。本节使用系统的主要功能是构建一个医学领域的问答系统,以
《中国糖尿病防治指南》为知识库,通过混合检索从知识库中获取相关信息,再利用医疗领域

微调模型生成专业且严谨的答案,同时返回答案的来源文档,方便用户核实信息。

1.
 

项目模块概述

该项目借助LangChain的模块化设计,在一定程度上简化了RAG流程,核心组件及其
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功能如下。
(1)

 

文档加载器:
 

负责解析PDF格式的文档,代码中使用PyPDFLoader加载PDF
文档。

(2)
 

文本分割器:
 

按语义或长度对文档进行切分,代码中使用RecursiveCharacterTextSplitter
对中文文本进行分割。

(3)
 

嵌入模型:
 

生成文本的向量表示,代码采用HuggingFaceEmbeddings。
(4)

 

向量数据库:
 

存储和检索向量化后的文档,代码选用FAISS。
(5)

 

检索器:
 

执行混合检索与重排序,代码中综合运用了BM25Retriever和FAISS检

索器,并通过 EnsembleRetriever进行加权融合,还使用 CrossEncoderReranker进行重

排序。
(6)

 

生成模型:
 

基于上下文生成答案,代码使用 HuggingFacePipeline集成了医疗领域

微调模型。

2.
 

参考代码

1)
 

知识库准备(document_preprocessing.py)
知识库的作用是把存储医学知识的PDF文档加载进来,并且按照一定的规则将其分割

成合适大小的文本块。这样做的好处是,后续进行文本向量化和信息检索时会更加高效和

精准。

  #加载PDF文档 借助PyPDFLoader类 它能将指定路径的PDF文件内容读取出来
  loader

 

=
 

PyPDFLoader file_path 
  documents

 

=
 

loader load  
#中文文本分割 结合语义与长度 
  text_splitter

 

=
 

RecursiveCharacterTextSplitter 
    chunk_size=512 chunk_overlap=64 
    separators= "\n\n" 

 

"\n" 
 

" " 
 

" " 
 

" "  
    length_function=lambda

 

x 
 

len list jieba cut x    
#用于存储分割后的文本块 并遍历每个加载进来的文档
  chunks

 

=
 

  
  for

 

doc
 

in
 

documents 
    #

 

对单个文档进行分块处理
    doc_chunks

 

=
 

text_splitter split_documents  doc  
    #

 

将分块结果添加到总的文本块列表中
    chunks extend doc_chunks 
  return

 

chunks
 

2)
 

数据库向量化(vector_database.py)
把准备好的文本数据转换为向量形式,并构建相应的向量数据库。向量数据库的作用

在于能快速找到与查询内容最相似的文本。

  #初始化嵌入模型 使用指定的中文文本向量化模型
  embed_model

 

=
 

HuggingFaceEmbeddings 
    model_name="GanymedeNil text2vec-large-chinese" 
    model_kwargs= "device" 

 

"cpu"  
    encode_kwargs= "normalize_embeddings" 

 

True  
#计算每个批次的大小 将文本合理地分批次处理且将文本划分为多个批次
  batch_size

 

=
 

max 1 
 

len texts 
 

  
 

10 
  all_batches

 

=
 

 texts i i+batch_size 
 

for
 

i
 

in
 

range 0 
 

len texts  
 

batch_size  
  vector_db

 

=
 

None
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  #遍历每个批次进行向量化处理
  for

 

i 
 

batch
 

in
 

enumerate all_batches  
    if

 

i
 

==
 

0 
      vector_db

 

=
 

FAISS from_documents 
        documents=batch embedding=embed_model 
        distance_strategy="COSINE" 
    else 

 

#保存向量数据库到指定路径
  vector_db save_local "faiss_diabetes_index" 
  return

 

vector_db
 

3)
 

检索器实现(new_retriever.py)
检索器的主要作用是根据用户的查询,从向量数据库中找出与之最相似的文本。在这

个系统中,使用向量数据库的相似性搜索功能,通过设置合适的搜索类型和参数,能够快速

准确地定位到相关的文本信息。

  #使用FAISS向量检索 search_type为相似性搜索 能找出与查询最相似的文本
retriever=vector_db as_retriever 
search_type="similarity" 
search_kwargs= "k" 5  

 

#k表示返回最相似的前k个结果
  return

 

retriever
 

4)
 

生成模型的配置(generation_model.py)
这部分代码的任务是配置生成模型,用于根据检索到的文本和用户的问题生成详细的

回答。

  #定义要加载的模型 同时加载tokenizer用于将文本转换为模型可处理的输入
  model_name

 

=
 

"IDEA-CCNL Wenzhong-GPT2-110M"
 

  tokenizer
 

=
 

AutoTokenizer from_pretrained model_name trust_remote_code=True 
  #初始化文本生成管道 设置生成的最大新token数、温度、重复惩罚等参数
  medical_pipeline

 

=
 

pipeline 
    "text-generation" model=model tokenizer=tokenizer max_new_tokens=256 
    temperature=0 3 repetition_penalty=1 1 
    pad_token_id=tokenizer eos_token_id 
  #

 

将生成管道集成到LangChain中
  medical_llm

 

=
 

HuggingFacePipeline pipeline=medical_pipeline 
  return

 

medical_llm
 

5)
 

主程序

主程序是整个医疗问答系统的核心调度部分,它会依次调用前面实现的各个功能模块,
完成系统的初始化和示例问题的处理。具体流程如下:

 

首先,进行知识库的准备工作,将

PDF文档加载并分割成文本块;
 

接着,构建向量数据库,把文本转换为向量形式以便快速检

索;
 

然后,配置检索器,用于根据问题从向量数据库中查找相关文本;
 

再配置生成模型,用
于根据检索结果生成回答;

 

最后,构建RAG链(检索增强生成链),将检索和生成过程结合

起来,对示例问题进行处理并输出答案和来源文档。

  #获取文档内容所在目录
  directory

 

=
 

os path dirname os path abspath __file__  
  file_path

 

=
 

os path join directory 
 

"Diabetes1 pdf" 
#调用知识库准备函数 将PDF文档加载并分割成文本块
  texts

 

=
 

prepare_knowledge_base file_path 
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  #调用函数构建向量数据库 将文本转换为向量形式
  vector_db

 

=
 

build_vector_database texts 
#从向量数据库创建检索器 用于后续查询相关文本
  retriever

 

=
 

vector_db as_retriever 
    search_type="similarity" search_kwargs= "k" 

 

5  
#配置生成模型 用于根据检索结果生成回答
  llm

 

=
 

configure_generation_model  
#构建RAG链 将检索和生成过程结合起来
  rag_chain

 

=
 

 
       "context" 

 

retriever
 

|
 

format_docs 
 

"question" 
 

RunnablePassthrough   
      |

 

PROMPT|
 

llm|
 

StrOutputParser   
  #

 

定义示例问题并调用RAG链处理问题并得到答案
  question

 

=
 

"我国糖尿病患病率的变化趋势是怎样的 "
  result

 

=
 

rag_chain invoke question 
  print result 
  #

 

调用检索器获取来源文档
  docs

 

=
 

retriever invoke question 
 
运行结果如图5.2所示。

图5.2 运行结果

5.5 实验:
 

基于LangChain的医学领域RAG系统实现

  
1.

 

实验意义与目的

以LangChain框架为核心,一步一步教读者实现一个完整的RAG系统,覆盖环境配

置、代码解析。通过医疗问答系统的实战案例,更深入地理解RAG系统。

2.
 

实验内容

(1)
 

完成RAG环境的搭建。
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(2)
 

完成RAG系统示例。
(3)

 

启动RAG系统。
(4)

 

与RAG交互。

3.
 

实验环境

(1)
 

操作系统:
 

Windows
 

10/11
 

64位。
(2)

 

硬件。
最低:12GB

 

内存。
推荐:

 

32GB内存,NVIDIA
 

CUDA
 

显卡
 

(RTX
 

3060+推荐)。
存储:

 

50GB硬盘空间
 

(推荐
 

SSD)。
软件:Pycharm、Anaconda。

4.
 

实验步骤

1)
 

安装软件

(1)
 

安装Pycharm。
访问Pycharm官网(https://www.jetbrains.com.cn/pycharm/download/?section=

windows),下载安装包,如图5.3所示。
然后运行pycharm-2025.1.exe,进行Pycharm安装,均选默认配置安装即可。
安装完成后,运行桌面图标,如图5.4所示。

图5.3 下载Pycharm界面 图5.4 Pycharm软件图标

(2)
 

安装Anaconda。
访问Anaconda官网(https://www.anaconda.com/download/success),单击Download按

钮,下载安装包,然后运行Anaconda3-2024.10-1-Windows-x86_64.exe,如图5.5所示。
然后运行Anaconda3-2024.10-1-Windows-x86_64.exe,进行Anaconda安装,均选默认

配置安装即可。
安装完成后,运行桌面图标,如图5.6所示。

2)
 

搭建Python环境

(1)
 

使用教材提供的已建立好的Python环境(推荐)。

①
 

下载完毕教材提供的文件资源,并找到rag_env.zip,并解压放置到本地路径中(本
环境基于CPU版本),如图5.7所示。

②
 

找到文件资源中“代码”文件夹中的“第五章
 

代码”文件,并解压放置到本地路径中,
如图5.8所示。
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图5.5 下载Anaconda界面

图5.6 Anaconda软件图标 图5.7 Python环境 图5.8 第五章内容的代码

③
 

打开Pycharm,选择打开项目,找到刚解压的代码文件夹,如图5.9所示。

图5.9 使用Pycharm打开第五章代码

(2)
 

自主安装Python环境。
这里借助Anaconda工具来高效管理Python环境,将使用CPU版本进行开发,确保程

序的稳定运行。

①
 

Python环境配置:
 

建议Python
 

3.9或以上版本。
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  conda
 

create
 

-n
 

rag_env
 

python=3 9
 

  conda
 

activate
 

rag_env
 

②
 

核心依赖与安装命令。

faiss-cpu:
 

faiss库能高效构建和管理向量数据库。

sentence-transformers:
 

用于生成文本嵌入,HuggingFaceEmbeddings依赖此库。

huggingface_hub:
 

提供模型下载与加载、数据集等功能。

langchain:
 

为构建RAG系统提供所需的组件。

langchain-community:
 

community库主要包含文档加载器、嵌入模型等工具。

langsmith:
 

是与LangChain应用平台进行交互的Python客户端库,提供执行追踪、错
误调试、评估等功能。

Pypdf:
 

用于处理
 

PDF
 

文件的
 

Python
 

库。

③
 

环境验证:
 

项目资源中提供两个测试脚本,test_rag_env.py、test_rag_env2.py可自

行测试。
测试程序1:

 

test_rag_env,如图5.10所示。

图5.10 test_rag_env测试成功

测试程序2:
 

test_rag_env2,如图5.11所示。

3)
 

启动程序

(1)
 

执行main.py脚本,如图5.12和图5.13所示。
(2)

 

执行成功,如图5.14所示。
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图5.11 test_rag_env2测试成功

图5.12 main.py文件位置 图5.13 执行 main脚本

图5.14 执行成功

(3)
 

更换寻求RAG系统的问题:
 

找到main.py第92行代码,可以输入自己想要答案

的问题,如图5.15所示。
注意:

 

①
 

执行过程中根据用户自身的计算机性能,可以更换不同模型:
 

找到generation_model.
py,找到model_name行,可以自行更换本书中提供的其他预训练模型,如图5.16所示。
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图5.15 更换咨询问题

图5.16 预训练模型的匹配

②
 

本书中代码所采用的模型为IDEA-CCNL/Wenzhong-GPT2-110M,由于该模型是

小容量预训练中文大模型,因此,该模型可加载的PDF文件内容较少,示例代码中仅使用了

Diabetes1.pdf数据,该数据仅截取原数据集部分内容,若要使用完成数据集,可找到“数据

集”文件夹中的“中国糖尿病防治指南”,同时请更换其他大模型,否则会报容量不足错误,如
图5.17所示。

图5.17 运行结果影响的文件

5.
 

实验结果与分析

本地部署RAG系统成功,实现回答更精准,快速响应,同时也注意数据隐私保护。

 小  结

检索增强生成(RAG)技术通过结合信息检索与文本生成,有效提升了大语言模型在知

识更新、专业领域应用及生成内容可靠性等方面的能力。RAG技术的发展历程经历了从早
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期探索到多模态融合的演进,并在智能客服、医疗保健、教育培训等多个行业展现出应用

潜力。

RAG系统的核心架构包含检索器、生成器和知识库三大组件,通过“检索-生成”的工作

流程,实现从用户查询到答案输出的完整链路,关键技术包括文本向量化、混合检索及提示

词工程等,这些技术共同作用于提升RAG系统性能和优化生成结果。
总体而言,RAG技术通过解决大语言模型的技术瓶颈,实现了更高效、准确和可靠的文

本生成,为人工智能在各行业的深化应用提供了有力支持。

思维导图
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科学家传奇:
 

颜水成与RAG技术的“破壁”之旅
 

在人工智能(AI)这片充满无限可能的星空中,一颗耀眼的新星正在冉冉升起,他的名

字叫颜水成。他就像一位无畏的探险家,在AI的莽莽丛林中,披荆斩棘,勇往直前,而他与

一项被称为RAG(检索增强生成)的革命性技术之间的故事,更是一段激动人心的传奇。
好奇心:

 

一切开始的起点

颜水成的好奇心就像一颗埋藏在他心底的种子,从小就生根发芽。转动的风车在他眼

里是空气动力学的奥秘,滴答的钟表在他耳中是时间流逝的神秘低语。这种对世界的好奇,
最终指引他走上了探索科学的道路。

AI的召唤:
 

燃烧的梦想

随着颜水成渐渐长大,他对科学的热爱也如同烈火般燃烧起来。在众多学科中,计算机

科学和AI就像一块巨大的磁石,深深地吸引着他。那些精妙的算法和模型,就像一扇扇通

往未知世界的大门,让他忍不住想要一探究竟。
大学生活就像一头扎进知识的海洋,颜水成贪婪地吸收着一切。他如饥似渴地学习着

AI大模型语言相关的知识,就像夜空中突然亮起的一颗星,照亮了他前进的方向。

AI困境:
 

RAG技术的“灵光乍现”
当时的AI领域正处于高速发展的黄金时代,但也面临着巨大的挑战。如何让机器更

好地理解和生成人类语言,成为制约AI发展的关键难题。颜水成敏锐地意识到,RAG技

术就像黑暗中的一道光,也许就是解决这个难题的“钥匙”。

RAG技术:
 

AI的“最强大脑”
你是否曾被AI一本正经地胡说八道震惊过? RAG技术正是为了解决AI的这个“幻

觉”问题而生。它就像给 AI装上了一个“外脑”,让 AI在回答问题前,先从外部知识库中

“查阅资料”,确保答案的准确性和可靠性。

RAG技术就像AI的“最强大脑”,它有三大“必杀技”。

•
 

实时更新:
 

告别AI知识过时的难题,RAG让AI永远掌握最新信息。

•
 

专业精通:
 

解决AI在专业领域容易出错的问题,RAG让AI成为真正的专家。

•
 

有理有据:
 

改变AI“黑箱”操作的弊端,RAG让AI的思考过程可以追溯。
颜水成的“破壁”之旅

为了实现这个目标,颜水成带领他的团队,踏上了一条充满挑战的道路。他们遇到了无

数难以想象的困难,经历了无数次的失败。
在一次关键的实验中,他们遇到了一个巨大的难题:

 

模型生成的文本毫无逻辑,就像一

盘散沙。团队成员们尝试了各种方法,却都毫无进展。
颜水成陷入了沉思。他不断地回顾实验的每一个细节,突然,一个全新的想法闪现在他

的脑海中:
 

调整数据检索策略! 他认为,如果能设计出更智能的数据检索方式,也许就能为

模型注入清晰的逻辑。
这个想法点燃了团队新的希望。他们夜以继日地工作,最终设计出了一种全新的数据

检索算法。实验结果出来了! 模型生成的文本终于变得连贯而有逻辑,就像一个真正的人

在思考和表达。
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  RAG技术的未来:
 

无限可能

RAG技术的成功为人工智能开辟了新的道路。它正在各行各业展现出巨大的应用

潜力。

•
 

智能客服:
 

RAG让AI客服秒懂用户问题,提供精准解答。

•
 

法律咨询:
 

RAG帮助律师快速查找法律条文,提高工作效率。

•
 

新闻写作:
 

RAG辅助记者撰写深度报道,让新闻更有价值。

•
 

代码生成:
 

RAG帮助程序员快速解决Bug,提升开发效率。
而颜水成,这位AI“最强大脑”的缔造者,仍在继续他的探索,带领我们走向更加激动人

心的AI未来。

 习 题 5
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