
第5章 Android用户界面

Android用户界面是应用程序开发的重要组成部分,决定了应用程序是否美观、易用。
通过本章的学习可以让读者掌握基于JetpackCompose的用户界面开发方法,了解在界面

开发过程中常见的基础UI组件、布局组件、高级组件和导航组件的使用方法。
本章学习目标:

• 了解UI开发的基本概念。

• 掌握 Modifier修饰符的使用方法。

• 掌握基础UI组件、布局组件和高级组件的使用方法。

5.1 JetpackCompose概述

JetpackCompose(见图5.1)是谷歌公司推出的现代化AndroidUI构建工具包,采用声明

式编程范式,极大地简化了用户界面开发流程。Compose是Jetpack组件家族的一员,旨在取

代传统的基于XML的UI描述方式,使开发者可以使用Kotlin语言,通过函数的方式直接构

建界面。

图5.1 JetpackComposeUI框架

JetpackCompose(简称Compose)在性能方面展现出明显优势。它通过跳过不必要的

UI重绘,大幅减少渲染开销,从而保证界面流畅。Compose在底层充分利用Kotlin编译器

Android应用程序开发(第5版)

100

优化,支持按需更新界面元素,避免传统View层级过深带来的性能瓶颈。相比基于XML
的方式,它在内存占用和渲染速度上更高效,同时具备更佳的响应能力。

JetpackCompose受到了React、Flutter等框架的影响,强调以状态驱动界面更新,并具

备更高的可组合性和可读性。开发者可以通过Composable函数定义UI组件,界面更新逻

辑更加清晰简洁。谷歌公司在Compose的设计中,深度集成了Kotlin的语言特性,如扩展

函数、高阶函数和协程,从而让界面开发更加灵活高效。

JetpackCompose经过一系列测试版本后,于2021年7月发布了1.0稳定版,此后,谷
歌公司持续优化 Compose的 性 能 与 功 能,陆 续 引 入 了 Material3支 持、多 平 台 适 配

(JetBrainsComposeMultiplatform)、自定义布局等能力,逐渐形成了完整的生态体系。

Compose的推出标志着AndroidUI开发从命令式向声明式的重大转变,它不仅提高

了代码的可维护性,也加快了界面的开发效率。如今,JetpackCompose已成为官方重点推

荐的UI框架,广泛应用于新一代Android应用开发中。

Jetpack是Google提供的一套Android开发组件库集合,旨在简化应用开发,提升开发

效率与代码质量。它涵盖了架构、UI、行为、基础功能等多个方面,包括常用的 Room、

ViewModel、LiveData、Navigation和 WorkManager等组件。Compose与Jetpack组件无

缝对接,提供现代化的Android应用开发体验。

JetpackCompose改变了AndroidUI的编程方式,使界面构建更自然、响应更灵活、开
发效率更高,代表了AndroidUI开发的未来方向。

5.2 基本概念

5.2.1 Composable函数

 JetpackCompose中的所有UI都是由可组合函数(ComposableFunctions)构成的,这
些函数是Compose编程模型的核心,负责描述界面的结构与内容。通过组合这些函数,可
以灵活地构建复杂的用户界面。

所谓Composable函数,是指使用@Composable注解标记的Kotlin函数。它们可以直

接输出UI元素,也可以组合其他Composable函数构建更复杂的 UI。Compose会在运行

时根据界面状态的变化,自动调用这些函数进行界面重组。
基本语法如下:

 1 @Composable

2 fun Greeting(name: String) {

3 Text(text = "Hello, $name!")

4 }

第1行代码的@Composable注解,表示函数Greeting()是一个Composable函数。第

3行代码的Text是一个显示文本的基础 UI组件,显示的内容是“Hello,$name!”,其中

name是函数Greeting()传递的参数。

AndroidStudio提供了对Composable组件的预览功能,需要再写一个Composable函

数,在这个新的函数中调用Greeting()函数。

第5章 Android用户界面

101

 1 @Preview

2 @Composable

3 fun DefaultPreview(){

4 Greeting("Android")

5 }

第1行代码增加@Preview注解,用于在 AndroidStudio中预览Composable函数的

UI,无须在模拟器中运行应用,就可以看到UI的显示效果,而且可设置如主题、设备尺寸等

参数,帮助开发者快速调试和设计界面。
第4行代码调用了Greeting()函数,name的值为Android,这样在AndroidStudio中

就可以看到预览效果,如图5.2所示。

图5.2 预览效果

@Preview注解还可以指定预览时使用不同参数设置分辨率和显示效果,具体的用途

说明和示例参考表5.1。
表5.1 @Preview注解参数说明

用 途 说 明 示 例 代 码

设置预览名称 @Preview(name="LightModePreview")

显示背景色 @Preview(showBackground=true)

自定义背景颜色 @Preview(showBackground=true,backgroundColor=0xFFE0E0E0)

设置固定预览尺寸 @Preview(widthDp=360,heightDp=640)

夜间模式预览
@ Preview (uiMode = Configuration.UI_ MODE _ NIGHT _ YES,
showBackground=true)

模拟特定设备(如Pixel4)
@Preview(device="spec:shape=Normal,width=411,height=891,unit=
dp")或 @Preview(device="pixel_4")

 将这些注解组合使用,以覆盖更多真实设备和环境下的UI效果。

5.2.2 重组机制

在JetpackCompose中,“重组”指当界面数据发生变化时,自动重新计算和更新UI的

过程。它就像一个智能的“更新机制”,只会重新绘制那些变化的部分,而不是整个界面。这

种方式与传统的UI更新不同,传统的UI更新通常需要重新绘制整个屏幕。
重组是由“状态”变化触发的,当界面上的数据或状态变化时,Compose会自动检查哪

些UI元素需要更新。只更新实际变化的部分,而保持其他部分不变。
下面是Compose重组示例,这个例子用来展示Compose如何自动进行局部重组:

 1 @Composable

2 fun CounterExample() {

Android应用程序开发(第5版)

102

 3 var count by remember { mutableStateOf(0) }

4

5 Column {

6 Text(text = "当前计数:$count")

7 Button(onClick = { count++ }) {

8 Text("增加")

9 }

10 }

11 }

12

这段代码现在看起来还是有些难懂,读者可以只关注第6行和第7行代码,分别创建了

图5.3 创建文本组件和按钮组件

文本组件和按钮组件,如图5.3所示。
当单击按钮时,count发生变化,因为文本组件显

示的内容依赖于count,因此文本组件会被更新。而按

钮组件的显示与count无关,因此不会参与UI更新。
重组的意义在于提升界面更新的效率与性能。传

统UI框架在状态变化时常常需要手动刷新整个界面

或控件,容易导致冗余渲染和性能浪费。而Compose
通过重组机制,能够根据状态的变化,仅更新界面中受

影响的部分,避免不必要的计算和重绘,这样既能保持

UI的一致性,又能提升应用的响应速度和流畅性。对于开发者来说,重组还简化了状态管

理逻辑,让界面编写更加直观,是现代UI编程的重要特性之一。

5.2.3 状态管理

在JetpackCompose中,状态(State)是指那些会影响UI显示的数据,并且这些数据一

旦发生变化,系统就会自动触发对应Composable函数的重组,以更新界面显示,可以简单

理解为:状态是驱动ComposeUI的源头。
举个例子说明什么是“状态”:

 1 @Composable

2 fun CounterRemember() {

3 var count by remember { mutableStateOf(0) }

4 Button(onClick = { count++ }) {

5 Text(text = "单击次数: $count")

6 }

7 }

在这个代码中,第3行代码的count就是一个状态变量。在第4行代码中,当用户单击

图5.4 预览CounterRemember()

按钮时,count会累加1,因此改变了count状态。因为

第5行代码的 Text的显示内容依赖于count这个状

态,所以count状态的改变会导致Compose重组,更新

UI中的数值,如图5.4所示。
仔细看这个代码:

第5章 Android用户界面

103

 1 var count by remember { mutableStateOf(0) }

mutableStateOf(0)创建一个可变的状态对象,初始值为0。remember{...}用于在

Composable中“记住”这个状态,只在第一次进入组合时创建,避免在每次重组时重新初始

化。by是Kotlin的属性委托语法,可以直接通过count来访问和修改状态值,而不需要显

式调用get()或set()方法。

1.mutableStateOf
mutableStateOf是Compose中统一的状态包装器,可以广泛地用于多种类型的状态管

理。不仅可以用于Int,还可以创建任何类型的可变状态,只要这个类型在Compose中是可

观察的,mutableStateOf常见用法如表5.2所示。
表5.2 mutableStateOf常见用法

状 态 类 型 示 例 代 码

整数状态 valcount= mutableStateOf(0)

字符串状态 valtext= mutableStateOf("Hello")

布尔状态 valisVisible= mutableStateOf(true)

列表状态 valitems= mutableStateOf(listOf("A","B","C"))

自定义数据类 valuser= mutableStateOf(User("Tom",18))

可空类型 valname= mutableStateOf<String?>(null)

2.remember{...}

remember{...}是用于在组合过程中存储状态的关键API,它的作用是在Composable
函数中记住某个值,防止在每次重组时被重新计算或创建。

Compose是一个响应式、声明式的UI框架,它的Composable函数可能会因为状态变化被

频繁调用。为了避免每次重组都重新执行某些初始化操作,remember{...}会在首次执行时保

存值,并在后续重组中复用先前保存的结果,且它在组合期间的生命周期中保持稳定。
需要注意的是,remember{...}只能在Composable函数内部调用,remember{...}的值

只会在当前组合期间保存,如果Composable离开组合(如页面切换、旋转屏幕)就会被

销毁。
如果需要在配置变更(如旋转屏幕)后依然能恢复数据,可以使用rememberSaveable。

 1 @Composable

2 fun CounterSave() {

3 var count by rememberSaveable { mutableStateOf(0) }

4 Button(onClick = { count++ }) {

5 Text(text = "单击次数: $count")

6 }

7 }

这个新的Counter只有第3行代码不同,将原来的remember修改成rememberSaveable。
示例需要启动Android模拟器进行测试。先单击按钮增加单击次数,然后旋转模拟器屏幕

方向,查看“单击次数”是否保持不变。

3.By
by是一个委托关键字,用于将某个属性的读写操作委托给另一个对象来实现,这种机

Android应用程序开发(第5版)

104

制称为“属性委托”(PropertyDelegation)。

by关键字在Compose中的常见用途就是简化状态变量的读写语法,让代码更自然、接
近普通变量的使用方式。

 1 val state = remember { mutableStateOf(0) }

2 var count = state.value

3 state.value = 1 //这样写要手动处理

上面的代码和下面的代码等效:

 1 var count by remember { mutableStateOf(0) }

2 count = 1

使用by后,就可以像操作普通变量一样使用count,其实背后会调用state.value,使代

码更简洁、清晰。

5.2.4 状态提升

在Compose中,为了保持组件的可组合性与可重用性,通常不推荐在Composable函

数内部直接管理状态,而是将状态作为参数传入,通过回调函数通知外部更新,这一模式称

为状态提升(StateHoisting)。
通俗地讲就是:把状态管理从子组件“提升”到父组件中,由父组件来控制状态,子组件

只负责展示和通知变化。
首先看一下没有进行状态提升的代码:

 1 @Composable

2 fun Counter() {

3 var count by remember { mutableStateOf(0) }

4 Button(onClick = { count++ }) {

5 Text("Count: $count")

6 }

7 }

8

9 @Composable

10 fun CounterScreen() {

11 Counter()

12 }

13

这里的子组件Counter管理状态count,父组件CounterScreen没有管理任何状态。如

果将count的状态管理从子组件Counter“提升”到父组件CounterScreen中,代码如下:

 1 @Composable

2 fun Counter(count: Int, onIncrement: () -> Unit) {

3 Button(onClick = onIncrement) {

4 Text("Count: $count")

5 }

6 }

7

8 @Composable

9 fun CounterScreen() {

第5章 Android用户界面

105

 10 var count by remember { mutableStateOf(0) }

11 Counter(count = count, onIncrement = { count++ })

12 }

13

Counter不再自己管理状态,而是通过参数count和onIncrement实现展示与事件处

理,CounterScreen管理状态并传递给Counter。
之所以要做状态提升,就是把状态交给更高层的组件管理,让子组件专注于展示与反

馈,写出更清晰、解耦、可重用的 UI。
这里举个通俗易懂的例子:孩子(子组件)玩玩具(显示 UI),原来是自己保管玩具(自

己管理状态),但现在玩具太贵了(状态要被多个组件共享或保存),于是家长(父组件)来保

管玩具(状态),孩子只管玩和告诉家长“我要换玩具”(通过回调通知改变状态)。
这种方式遵循了单向数据流(UnidirectionalDataFlow,UDF)的设计理念。单向数据

流是一种设计模式,指的是数据在应用中沿着单一方向流动:状态(State)→驱动UI→用户

操作(Event)→更新状态→再次驱动UI。
数据流动路径如下。
(1)State(状态)。由上层组件提供。
(2)UI(界面)。由状态生成,Compose会根据状态变化自动重组 UI。
(3)Event(事件)。用户与UI交互,触发事件(如单击按钮)。
(4)State更新。事件处理函数更新状态。
(5)新的UI渲染。状态变化,Compose重新绘制 UI。
单向数据流的核心优势在于数据流动路径清晰、可控,极大地简化了界面状态的管理。

当状态始终从上层传递给下层组件,并且所有状态更新通过统一的事件回传处理,就避免了

“状态不同步”或“状态来源不明”的问题。
这种模式让UI渲染成为状态的纯函数,提高了组件的可预测性与可测试性。同时,它

也促进了业务逻辑与界面显示的分离,降低了组件之间的耦合,增强了代码的复用性和维

护性。

5.2.5 Composable的生命周期

JetpackCompose是响应式UI框架,是以“状态变化”为核心的生命周期来驱动 UI渲

染。生命周期是状态驱动、事件触发的“循环过程”,而非一次性的线性流程。

Composable在生命周期中有三种状态:组合(Composition)、重组(Recomposition)和
卸载(Disposal)。

1.组合 (可以多次执行)
每次组件重新出现在界面中都会重新组合。例如,用户从首页进入详情页再返回首页,

这时候首页的Composables又会重新被“组合”一次。

2.重组 (频繁被执行)
只要状态变了,就会触发重组,次数可能很多。每次状态变动(如单击按钮、输入文字

等)都会触发对应Composable的“重组”,这是Compose最核心的机制。
每点一次按钮,就会触发Text重组示例:

Android应用程序开发(第5版)

106

 1 val count = remember { mutableStateOf(0) }

2 Button(onClick = { count.value++ }) {

3 Text("单击次数:${count.value}")

4 }

3.卸载 (每次消失就会被执行)
当组件被从界面中移除(或替换)时就会执行卸载,可能发生多次。
多次显示/隐藏 MyDialog组件,就会多次触发卸载→组合→卸载→...示例:

 1 if (showDialog) {

2 MyDialog() //当 showDialog 变为 false,这个组件会被卸载
3 }

5.2.6 副作用函数

在JetpackCompose中,界面是通过函数方式“声明”出来的。这意味着Compose会频

繁地调用@Composable函数来“重组”界面。当状态变化时,Compose会重新执行UI构建

逻辑,以更新界面内容。
非UI操作之所以不能直接写在 UI逻辑中,是因为Compose的重组机制会导致它们

被多次执行,从而破坏预期的行为或引发性能问题。
为什么非UI操作不能直接放在UI逻辑中示例:

 1 @Composable

2 fun MyScreen() {

3 //这是危险的做法:协程会在每次重组时都重新启动
4 CoroutineScope(Dispatchers.IO).launch {

5 fetchData()

6 }

7 }

在UI逻辑中直接启动协程是非常危险的做法,因为重组会导致多次执行这部分代码,
从而导致代码异常或性能问题。

应该使用以下代码:

 1 @Composable

2 fun MyScreen() {

3 LaunchedEffect(Unit) { //这样是正确的,只启动一次
4 fetchData()

5 }

6 }

这里的LaunchedEffect是副作用函数的一种,可以保证在一个Composable生命周期

中只执行一次,只有这样才是安全的做法。
副作用函数(Side-effectAPIs)是用来执行那些不能直接放进 UI构建逻辑里的“额外

操作”,例如启动协程、注册监听器或者更新外部状态等。这些函数会跟随Composable的

生命周期自动启动和清理,不用手动控制,常见的副作用函数如表5.3所示。
副作用函数依赖于组合函数的生命周期,用于确保某些只能执行一次或需在特定时机

执行的操作不会在重组时被重复触发。它们根据生命周期的变化自动启动、更新或清理副

第5章 Android用户界面

107

作用,从而避免重复执行、内存泄漏或逻辑错误,使界面行为与状态保持一致,副作用函数和

生命周期的关系如表5.4所示。

表5.3 常见的副作用函数

副作用函数 用 途 生命周期关系

LaunchedEffect 启动协程,在组合时或键变化时执行 绑定组合,自动取消

rememberCoroutineScope 获取可复用的协程作用域,配合事件用 不会自动取消,需要手动管理

SideEffect 每次成功重组后执行 依附于组合,重组时触发

DisposableEffect 注册/解绑资源,如监听器、回调 组合时执行,卸载时清理

derivedStateOf 派生状态,防止无效重组 与remember一起用,随组合

rememberUpdatedState 保存更新值,避免闭包引用旧值 组合时更新,用于协程或监听器

snapshotFlow 将Compose状态转换成Flow 用于协程,跟随状态更新

表5.4 副作用函数和生命周期的关系

生命周期阶段 可用副作用函数 说 明

组合
LaunchedEffect,DisposableEffect,remember,
SideEffect

初始化操作、监听器注册、状态派生

重组 SideEffect,rememberUpdatedState 重组后同步外部状态、更新闭包引用值

卸载 DisposableEffect的onDispose 在移除时自动释放资源(如注销回调)

1.LaunchedEffect
LaunchedEffect用于启动协程并绑定“组合”生命周期的副作用函数,它只会在指定的

key变化时或第一次进入“组合”时执行一次,即使组合函数多次重组也不会重复执行协程

逻辑,适合用来执行一次性的逻辑,例如加载数据、发起网络请求、播放动画、延时跳转等。
启动协程加载数据示例:

 1 @Composable

2 fun UserProfile(userId: String) {

3 var userName by remember { mutableStateOf("加载中...") }

4

5 LaunchedEffect(userId) {

6 //当 userId 变化时重新执行此协程
7 userName = loadUserName(userId)

8 }

9

10 Text(text = "用户名:$userName")

11 }

12

13 //模拟网络请求
14 suspend fun loadUserName(id: String): String {

15 delay(1000)

16 return "用户$id"

17 }

第14行代码的suspend关键字用于声明挂起函数,表示这个函数可以在协程中挂起执

行,不会阻塞主线程。
第15行代码使用delay(1000)模拟网络延迟,不会阻塞线程,只是“挂起”1s。

Android应用程序开发(第5版)

108

第5行代码的LaunchedEffect(userId)用于启动协程,并在第一次进入组合时执行协

程逻辑。同时,因为设定了key的值userId,因此在userId改变后会再次执行协程逻辑。
在Compose中更新界面必须运行在主线程,但网络请求、读取文件等耗时任务不能阻

塞主线程,否则界面会卡顿甚至失去响应。使用suspend关键字配合LaunchedEffect可以

在后台执行这些操作,并在完成后安全地更新界面状态。
定时器示例:

 1 @Composable

2 fun TimerLoggerComposable() {

3 LaunchedEffect(Unit) {

4 while (true) {

5 delay(1000)

6 Log.d("TimerLogger", "定时任务触发")

7 }

8 }

9

10 Text(text = "定时任务已启动,每秒触发一次")

11 }

第3行代码用于启动协程,因为key设置为Unit,则只在第一次进入组合时执行一次。
第4~6行代码是无限循环,每1000ms,在Logcat中打印一次数据。

LaunchedEffect用于自动绑定到Composable生命周期,退出界面就会自动停止任务,
不会造成内存泄漏。

2.DisposableEffect
DisposableEffect可以用于有初始化和清理需求的副作用操作,它会在指定的key第一

次出现时执行副作用逻辑,并在组合退出或key变化时自动调用清理操作,适合用于注册监

听器、订阅回调、启动计时器、添加生命周期观察者等场景,这些操作通常需要在不使用时取

消或释放资源。
进入页面时打印“注册资源”,退出页面时打印“释放资源”示例:

 1 @Composable

2 fun DisposableScreen(){

3 var show by remember { mutableStateOf(true) }

4

5 Column {

6 Button(onClick = { show = !show }) {

7 Text("切换组件")

8 }

9

10 if (show) {

11 SimpleDisposableEffect()

12 }

13 }

14

15 }

16

17 @Composable

18 fun SimpleDisposableEffect() {

19 DisposableEffect(Unit) {

