
5.1 教

学

目

标

5.1.1 知识目标

 •

了解使用 Windows

Media

Player控件进行音频播放和控制。

•

掌握ProgressBar控件的使用,能够实现播放进度的显示。

•

掌握字符串处理函数,如Substring、Split、IndexOf、LastIndexOf、ToCharArray等,
能够灵活运用这些函数进行文本解析。

•

掌握泛型集合List T 的使用。

•

理解歌词同步显示的原理。

•

掌握Timer组件的使用,能够实现定时任务和同步功能。

•

理解对话框的使用,能够实现文件选择和用户交互。

5.1.2 能力目标

•

具备设计并实现一个简单的音频播放器应用程序的能力。

•

掌握使用 Windows

Media

Player控件实现音频播放、暂停、停止等基本功能。

•

理解并能够实现播放进度的显示和同步。

•

具备解析LRC歌词文件的能力,能够实现歌词与音频的同步显示。

•

理解并能够实现音频与歌词文件的自动匹配和加载。

5.1.3 素质目标

•

培养读者的创新思维,鼓励在现有基础上进行功能扩展和优化。

•

培养读者的动手能力,通过实践项目巩固所学知识。

•

培养读者的用户体验意识,通过界面设计和功能实现提升软件的用户友好度。

•

培养读者的逻辑思维能力,通过编程实现复杂的媒体处理和同步功能。

5.2 案

例

简

介

本案例旨在开发一个简单的歌词同步播放器应用程序,通过 Windows

Forms实现。该

应用程序的主要功能如下。

104

1.

音频播放

支持常见音频格式的播放、暂停、停止等基本控制功能。

2.

进度显示

通过ProgressBar控件实现播放进度的可视化,同时显示总时长。

3.

歌词解析与同步

•

支持LRC歌词文件的解析。

•

实现歌词与音频的同步显示。

4.

音频与歌词文件的自动匹配

•

根据音频文件名自动在特定文件夹查找对应的歌词文件。

•

自动加载歌词。

5.3 知 识 点

5.3.1 ProgressBar
 ProgressBar

控件即进度条控件,是一种常见的用户界面元素,常用于需要大量时间的

场合,用它来指示当前处理进度、完成的百分比,而不至于让用户迷惑。例如,用于显示文件

下载进度、显示批量文件格式的转换、显示播放器的当前播放进度、显示软件当前的安装进

度等。
进度条也有诸多事件、方法和属性。不过其事件和方法一般较少使用或者没有使用的

必要,因此下面主要介绍其属性。其主要属性如表5-1所示。
表5-1 ProgressBar控件的常用属性

属 性 说 明

Maximum 设置或返回进度条的最大值,默认值为100
Minimum 设置或返回进度条的最小值,默认值为0
Value 设置或返回进度条的当前值

Step 设置或返回一个值,该值用来决定每次调用Performstep方法时,Value属性增加的幅度

Style

决定控件运行时的外观,该属性为枚举值。其取值有Blocks、Continuous、Marquee。以

Blocks使用体验最好,因为后面两种都只能向用户表达“程序还没死”这个概念,而不能表

达“大概还需要等多久”这种概念

如下是实现文件复制进度的演示代码。

 private

void

CopyMultiFiles string

fileNames

 fileNames为待复制文件的数组

 progressBar1 Visible

=

true
 progressBar1 Maximum

=

fileNames Length

 for

 int

i

=

0

i

fileNames Length

i++

 File Copy fileNames i

fileNames i

+

" Copy"
 progressBar1 Value

=

i+1

105

5.3.2 TrackBar
TrackBar允许用户通过拖动滑块在一个范围内选择一个值。它通常用于调节音量、亮

度、进度等场景。从外观上看,该控件体现为一个滑块和一个刻度。

TrackBar

控件提供了丰富的属性和事件,可以灵活地满足各种需求。

1.

TrackBar

的常用属性

TrackBar

控件的常用属性如表5-2所示。

表5-2 TrackBar的一些常用属性

属 性 说 明

Minimum 获取或设置滑块的最小值(默认值为0)

Maximum 获取或设置滑块的最大值(默认值为10)

Value 获取或设置滑块的当前值

SmallChange 获取或设置滑块的小步长值(例如,按方向键时的变化量,默认值为1)

LargeChange 获取或设置滑块的大步长值(例如,按PageUp/PageDown键时的变化量,默认值为5)

Orientation 获取或设置滑块的方向(Horizontal水平或Vertical垂直)

TickFrequency 获取或设置刻度线的间隔

TickStyle

获取或设置刻度线的显示方式(None、TopLeft、BottomRight、Both),即刻度线相对于

滑块的位置。

•

None:

无刻度线。

•

TopLeft:

刻度线位于滑块的上部(水平滑块)或者左部(垂直滑块)。

•

BottomRight:

刻度线位于滑块的下部(水平滑块)或者右部(垂直滑块)。

•

Both:

滑块的上下部(水平滑块)或左右部(垂直滑块)都有刻度线

2.

TrackBar的常用事件

TrackBar

的常用事件如表5-3所示。

表5-3 TrackBar的常用事件

事 件 说 明

ValueChanged 当滑块的值发生变化时触发

Scroll 当用户拖动滑块或通过键盘改变滑块值时触发

下面看一个简单示例,为了叙述尽量简洁,基本都以代码来呈现,用户只需要新建一个

Windows

Forms项目即可,代码如下。

 TrackBar

trackBar

=

null
private

void

Form1_Load object

sender

EventArgs

e

 trackBar

=

new

TrackBar
 trackBar Minimum

=

0
 trackBar Maximum

=

100
 trackBar Value

=

50
 trackBar Orientation

=

Orientation Horizontal
 trackBar TickFrequency

=

10
 trackBar TickStyle

=

TickStyle BottomRight
 trackBar LargeChange

=

10

106

 trackBar SmallChange

=

1
 trackBar Left

=

10
 trackBar Width

=

this Width

-

20
 trackBar Scroll

+=

TrackBar_Scroll

 添加到窗体

 this Controls Add trackBar

private

void

TrackBar_Scroll object

sender

EventArgs

e

 this Text

=

trackBar Value ToString

程序执行效果如图5-1所示。

图5-1 TrackBar控件演示

5.3.3 数组参数与params
在前面讲授过函数,讲解过程中,参数的个数都是极少的。但在现实中,经常面临需要

向函数传递大量参数的情况。此时数组参数就是一个可以考虑的选择。
如下演示数组求和函数。

 static

int

Add int

nums

 int

sum

=

0
 for

 int

i

=

0

i

nums Length

i++
 sum

=

sum

+

nums i
 return

sum

调用时,先创建数组,然后传入数组名即可。

 int

numbers

=

new

int 5

1

2

3

4

5

 定义数组

Console WriteLine Add numbers 传入数组

 结果15

现在对前述数组求和函数稍做改造,即在数组参数前加上params修饰。

 static

int

Add params

int

nums

 int

sum

=

0
 for

 int

i

=

0

i

nums Length

i++
 sum

=

sum

+

nums i
 return

sum

107

此时,虽然函数定义有了改变,但是前述调用方式仍然可以,且结果一样。
那加了params后,又有什么变化呢? 其实,其好处在于调用时更为灵活,即无须事先

创建好数组,而只需要在调用时根据需要直接输入数组元素即可。正因为如此,params修

饰的参数具备如下特点。

•

params型参数允许函数接收可变数量的参数。

•

params型参数必须是函数的最后一个参数。
因此,对于params型数组参数,除了可以采用传统的调用方式,也可以采用如下形式。

 Console WriteLine Add 1 2 3 4 5 结果

15

5.3.4 字符串

字符串即string类型,也是一种极为常见的数据类型,在实际应用中被大量使用。字符

串用双引号来表达,例如:

 string

s="中国Zhongguo"

在C#中,默认采用Unicode字符编码,每个字符都算一个长度,因此字符串“ab”“12”
“科技”的长度都为2。字符串的长度可以通过属性Length来获取,其值即字符串中字符个

数,如上

s.Length

的值为10。
字符串具有不可变性。例如,若在前述的基础上给s重新赋值,即s=“中国”,该赋值语

句是创建了一个新字符串,并不是改变了原始字符串。基于此,字符串可以视为只读的字符

数组,索引从0开始,如

s[2]

的值为Z,但为其赋值则出错,如

s[2]

=‘z’

将会出错。
当字符串中有特殊字符时,此时需要进行字符串的转义操作。例如,由于双引号是字符

串的标记性字符,若字符串本身含有双引号,此时将会出错。例如:

 string

s="他对我说

"编程时务必要有精益求精的态度"。" 出错

字符转义通过“\”进行,常见的转义符如表5-4所示。
表5-4 常见转义符

转

义

符

号 含 义

\\ \

\n 换行
\t 制表符

\’ 单引号

\” 双引号

此外,也可以利用字符数组来构建字符串。例如:

 char

chars

=

'C'

'h'

'i'

'n'

'a'

string

s

=

new

string chars

 "China"

108

5.3.5 常用字符串静态函数

本节介绍与字符串处理相关的静态函数。这些函数遵从如下的调用形式。

 调用方法

string 方法名

以下将详细介绍string.Compare()、string.Format()、string.IsNullOrEmpty()和
string.Join()这4个常用的字符串函数。

1.

string.Compare()

string.Compare()方法用于比较两个字符串,它返回一个整数,指示第一个字符串的顺

序是小于、等于还是大于第二个字符串。
其典型重载形式如下。

 int

Compare string

strA

string

strB
int

Compare string

strA

string

strB

bool

ignoreCase
int

Compare string

strA

string

strB

StringComparison

comparisonType

其中:

•

strA:

第一个字符串。

•

strB:

第二个字符串。

•

ignoreCase:

如果为

true,则忽略大小写进行比较。

•

comparisonType:

指定比较的类型,如StringComparison.Ordinal、StringComparison.
OrdinalIgnoreCase等。

当返回值为负数时,表明strA小于strB;

当返回值为正数时,则表明strA大于strB;

否则表明二者相等。

 static

void

Main

 string

str1

=

"Abc"
 string

str2

=

"abc"

 区分大小写的比较

 int

iResult

=

string Compare str1

str2

false
 Console WriteLine "区分大小写的比较结果

"

+

iResult

 输出

-1

 不区分大小写的比较

 iResult

=

string Compare str1

str2

true
 Console WriteLine "不区分大小写的比较结果

"

+

iResult

 输出

0

 使用

StringComparison Ordinal

进行区分大小写的比较

 iResult

=

string Compare str1

str2

StringComparison Ordinal
 Console WriteLine "使用

StringComparison Ordinal

"

+

iResult

 输出

-32

 使用

StringComparison OrdinalIgnoreCase

进行不区分大小写的比较

 iResult

=

string Compare str1

str2

StringComparison OrdinalIgnoreCase
 Console WriteLine "使用

StringComparison OrdinalIgnoreCase

"

+

iResult

 输出

0

109

注意:

使用string.Compare(str1,str2,StringComparison.Ordinal)进行字符串比

较时,是一种区分大小写的二进制比较。由于"A"和"a"的ASCII码值差为32,因
此返回-32。
注意:

使用string.Compare(str1,str2,false),其中,false表示区分大小写。但该重

载形式只在乎三种关系,即在前、在后和相等;

而不在意究竟在前或者在后多少。
由于"Abc"和"abc"在区分大小写的情况下不相等,且"Abc"在字典顺序中位于

"abc"之前,因此返回-1。

2.

string.Format()

string.Format允许将多个对象或值插入字符串的特定位置,并控制它们的显示格式。

string.Format是C#中处理复杂字符串拼接和格式化的常用工具。
其常用重载形式如下。

 public

static

string

Format string

format

params

object

args

其中:

•

format:

一个复合格式字符串,包含占位符{0}、{1}等,用于指定插入值的位置和

格式。

•

args:

要插入格式字符串中的参数列表(可以是变量、常量或表达式)。
该函数的关键在于format参数,其形式为{index:

formatString},包含两部分,即指定

参数位置的占位符和指定显示格式的格式化选项。
其中,占位符的形式为{index},其中index是参数的索引(从0开始),如{0}表示第一个

参数,{1}表示第二个参数,以此类推。
格式化选项则较多,一些常见的格式化选项如表5-5所示。

表5-5 常见的格式化选项

格 式 说 明

C或c 货币格式

D或d 十进制格式(适用于整数)

F或f 浮点数格式(可以指定小数位数,如F2表示保留两位小数)

N或n 数字格式(带千位分隔符,如1,234.56)

P或p 百分比格式(如0.123格式化为12.30%)

X或x 十六进制格式(适用于整数)

G或g 通用格式(根据值的类型自动选择最合适的格式)

0 数字占位符(如0000会将12格式化为0012)

数字占位符(如##.##会将12.3格式化为12.3)

如下演示占位符输出及基本的数字格式化输出。

 static

void

Main

 string

name

=

"小明"
 int

age

=

20
 double

height

=

1 68

110

 string

result

=

string Format "姓名

 0

年龄

 1

身高

 2 F2

"

name

age

height
 Console WriteLine result 输出

姓名

小明

年龄

20

身高

1 68

如下是格式化数字。

 static

void

Main

 int

number

=

12345
 double

price

=

123 4567

 string

result

=

string Format "数量

 0 N0

价格

 1 C2 "

number

price
 Console WriteLine result 数量

12 345

价格

$123 46

注意:

价格符号的显示将因操作系统的不同而不同,例如,也有可能显示为$123.46等。

3.

string.IsNullOrEmpty()

string.IsNullOrEmpty()方法用于确定指定的字符串是否为null或空字符串("")。这

是一个常用的辅助方法,用于在处理字符串时进行空值检查。
其语法形式为

 public

static

bool

IsNullOrEmpty string

value

当返回true时,表明当前检测的字符串为null或空字符串。

 public

static

void

Main

 string

str1

=

""
 string

str2

=

null
 string

str3

=

"

"
 string

str4

=

"China"

 Console WriteLine string IsNullOrEmpty str1

 输出

True
 Console WriteLine string IsNullOrEmpty str2

 输出

True
 Console WriteLine string IsNullOrEmpty str3

 输出

False
 Console WriteLine string IsNullOrEmpty str4

 输出

False

注意:

如果需要检查字符串是否为null、空字符串或仅包含空白字符,可以使用

string.IsNullOrWhiteSpace()方法。该函数检查上述str3将返回true,检查str4
则仍然为false。

4.

string.Join()

string.Join()方法用于将字符串数组或集合中的元素连接为一个单一的字符串,并在

元素之间插入指定的分隔符。
其常用重载形式为

 public

static

string

Join string

separator

string

values

111

其中:

•

separator:

用于分隔元素的字符串。

•

values:

一个字符串数组。

 public

static

void

Main

 string

words

=

"教育"

"科技"

"人才"

"C#"

 string

joined

=

string Join "

"

words
 Console WriteLine joined

 "教育

科技

人才

C#"

 使用不同的分隔符

 joined

=

string Join "

"

words
 Console WriteLine joined

 "教育

科技

人才

C#"

注意:

string.Join()只能用于字符串数组或集合。如果需要连接其他类型的数组

或集合,需要先将它们转换为字符串。

5.3.6 字符串插值$
字符串插值从C#

6.0开始引入,是一种较string.Format更简洁、更易读的字符串格

式化方法。$符号是实现字符串插值的关键,它允许在字符串字面量中直接嵌入表达式,从
而简化了字符串的构建过程。其基本语法如下。

 string

result

=

$"文本

 表达式

文本"

字符串插值具有如下特性。

•

可读性好:

字符串插值使代码更接近自然语言,易于阅读和理解。

•

语法简洁:

无须使用string.Format()方法和位置参数,代码更简洁。

•

支持表达式:

可以在花括号内使用任意表达式,如方法调用、属性访问等。

•

类型安全:

编译器会在编译时检查表达式的类型,减少运行时错误。
首先看一个与前文类似的格式化示例。

 string

name

=

"小明"
int

age

=

20
string

result=

$"姓名

 name

年龄

 age "
Console WriteLine result

 "姓名

小明

年龄

20"

可见,通过$实现了和string.Format相同的效果,但是其更为简洁。
现在看表达式的示例。

 int

a

=

5
int

b

=

10
string

sum

=

$" a

+

 b

=

 a

+

b "
Console WriteLine sum

 5

+

10

=

15

可见,$符号使得花括号{}内的内容会被解析为表达式,其结果将被嵌入最终的字符

112

串中。
既然可以执行表达式,自然也可以执行函数,例如:

 public

class

Star

 public

string

Name

get

set

 public

int

Age

get

set

 public

string

Introduce

 return

$"我叫 Name 现在 Age 岁"

调用演示代码如下。

 Star

star

=

new

Star

Name

=

"小明"

Age

=

20

string

sResult

=

star Introduce
Console WriteLine sResult

 我叫小明 现在20岁

5.3.7 常用字符串函数

本节介绍常用的字符串函数,这些函数遵从如下调用形式。

 string

s=""
s 函数

如下根据字符串函数的功能,将其分为4类,如表5-6所示。

表5-6 4类常用字符串函数

函

数

类

别 相关函数名字

转换类 ToCharArray、ToLower、ToUpper
查找类 Contains、EndsWith、StartsWith、IndexOf、LastIndexOf
编辑修改类 Trim、TrimEnd、TrimStart、Replace
提取类 Substring、Split

其中:

•

转换类:

用于将字符串转换为其他表达形式。

•

查找类:

用于在字符串中查找子字符串的位置或存在性。

•

编辑修改类:

用于修改字符串内容。

•

提取类:

用于从字符串中提取子字符串。
练一练:

思考如下几个场景属于转换、查找、编辑、提取中的哪一种。

•

判断一个人是否姓王。

•

获取一个单姓姓名中的姓。

•

将张三丰改为张叁丰。

•

统计历年四级试卷中的高频词。

113

•

字符串中有很多常见应用,例如,一个文本文档中有多少个特定的关键词? 一个文

本文档中有多少个句子?
如下转换类和查找类函数均以string

s

=

"中国Zhongguo"

为例。

1.

ToCharArray
将字符串转换为字符数组。

 string

s

=

"中国Zhongguo"
char

charArray

=

s ToCharArray

Console WriteLine "字符数组内容

"
foreach

 char

c

in

charArray

 Console Write c

+

"

" 最终输出 中

国

Z

h

o

n

g

g

u

o

2.

ToLower
将字符串中的所有字符转换为小写。

 string

s

=

"中国Zhongguo"
string

sResult

=

s ToLower

Console WriteLine "转换为小写

"

+

sResult

 中国zhongguo

3.

ToUpper
将字符串中的所有字符转换为大写。

 string

s

=

"中国Zhongguo"
string

sResult

=

s ToUpper

Console WriteLine "转换为大写

"

+

sResult

 中国ZHONGGUO

4.

Contains(string

s)
检查字符串中是否包含指定的子字符串。

 string

s

=

"中国Zhongguo"
bool

sResult1

=

s Contains "中国"
bool

sResult2

=

s Contains "中心"

Console WriteLine "是否包含

'中 '

"

+

sResult1

 true
Console WriteLine "是否包含

'Beijing'

"

+

sResult2

 false

5.

bool

EndsWith(string

s)
检查字符串是否以指定的子字符串结尾。

 string

s

=

"中国Zhongguo"
bool

sResult1

=

s EndsWith "guo"

114

 bool

sResult2

=

s EndsWith "中"

Console WriteLine "是否以

'guo'

结尾

"

+

sResult1

 true
Console WriteLine "是否以

'中 '

结尾

"

+

sResult2

 false

6.

bool

StartsWith(string

s)
检查字符串是否以指定的子字符串开头。

 string

s

=

"中国Zhongguo"
bool

sResult1

=

s StartsWith "中国"
bool

sResult2

=

s StartsWith "Zhong"

Console WriteLine "是否以

'中国 '

开头

"

+

sResult1 true
Console WriteLine "是否以

'Zhong'

开头

"

+

sResult2

 false

7.

IndexOf
该函数有两种常用重载形式。

•

IndexOf(string

s):

在字符串中查找子字符串,返回第一次出现的位置(索引从

0

开

始),如果未找到则返回-1。

•

IndexOf(string

s,int

start):

从指定的起始位置start处开始查找子字符串,返回第

一次出现的位置(索引从

0

开始),如果未找到则返回-1。

 string

s

=

"中国Zhongguo"
int

sResult1

=

s IndexOf "中国"
int

sResult2

=

s IndexOf "中心"
int

sResult3

=

s IndexOf "o" 等价于s IndexOf "o"

0
int

sResult4

=

s IndexOf "o"

5

Console WriteLine "'中国 '

首次出现的位置

"

+

sResult1 0
Console WriteLine "'中心 '

首次出现的位置

"

+

sResult2 -1
Console WriteLine "从位置

0

开始查找

'o'

首次出现的位置

"

+

sResult3

 4
Console WriteLine "从位置

5

开始查找

'o'

首次出现的位置

"

+

sResult4

 9

此外,在查找时还可以设定附加选项,如是否区分大小写,该重载形式如下。

 public

int

IndexOf string

text StringComparison

comparisonType

该重载形式请自行学习。

8.

LastIndexOf

该函数有两种常用重载形式。

•

int

LastIndexOf(string

s):

从字符串的右侧开始查找子字符串,返回第一次出现的

位置(索引从0开始),如果未找到则返回-1。

•

int

LastIndexOf(string

s,int

start):

从指定的起始位置start处开始从右侧向左查

找子字符串,返回第一次出现的位置(索引从0开始),如果未找到则返回-1。

115

 string

s

=

"中国Zhongguo"
int

sResult1

=

s LastIndexOf "o"
int

sResult2

=

s LastIndexOf "o"

7

Console WriteLine "'o'

最后一次出现的位置

"

+

sResult1 9
Console WriteLine "从位置

7

开始向左查找

'o'出现的位置

"

+

sResult2 4

练一练:

请说出如下各个i值为多少。

 string

s

=

􀆵教育强国 科技强国 Talent强国"
int

i

=

s IndexOf "强国"
i

=

s LastIndexOf "强国"
i

=

s IndexOf "强国" 1
i

=

s LastIndexOf "强国" 3

练一练:

如何利用IndexOf

实现查找一个字符串中有多少个特定的字符(例如,红
楼梦中出现多少个林黛玉)?
练一练:

请自行学习IndexOfAny和LastIndexOfAny。
下面开始讲解字符串编辑修改类函数,均以字符串s="中国Zhongguo#"为例,注意,

该字符串的第一个字符为空格,最后一个字符为#。
9.

Trim
移除字符串开头和结尾的空白字符(包括空格、制表符、换行符等)。
其典型重载形式如下。

 public

string

Trim
public

string

Trim params

char

trimChars

 移除指定的字符

string

s

=

"

中国Zhongguo#

"
string

sResult

=

s Trim

Console WriteLine $"原始字符串

' s '"
Console WriteLine $"Trim后字符串

'

sResult

 '" '中国Zhongguo# '

可见,字符串中的第一个空格被成功去除。
如下为移除指定字符的示例。

 string

s

=

"

中国Zhongguo#

"
string

sResult

=

s Trim '

'

'# '

Console WriteLine $"Trim后字符串

'

sResult

 '"

 '中国Zhongguo'

可见,字符串开头的空格和字符串尾部的#都被成功移除。
10.

TrimStart
移除字符串开头的空白字符或指定字符。其语法形式如下。

 public

string

TrimStart params

char

trimChars

string

s

=

"

中国Zhongguo#

"

116

 string

sResult

=

s TrimStart
Console WriteLine $"TrimStart后字符串

'

sResult

 '"

 中国Zhongguo#

字符串开头的空格被成功移除。

11.

TrimEnd
移除字符串结尾的空白字符或指定字符。语法形式同TrimStart。

 string

s

=

"

中国Zhongguo#"
string

sResult1

=

s TrimEnd
string

sResult2

=

s TrimEnd '# '
Console WriteLine $"TrimEnd后字符串

'

sResult1

 '"

 "

中国Zhongguo#"
Console WriteLine $"TrimEnd后字符串

'

sResult2

 '"

 "

中国Zhongguo"

12.

Replace
替换字符串中的指定字符或子字符串。
该函数有以下两种常用重载形式。

 public

string

Replace char

oldChar

char

newChar

 替换字符

public

string

Replace string

oldValue

string

newValue

 替换子字符串

不过由于字符必定是字符串,因此一般只需要使用第二种形式即可。

 string

s

=

"

中国Zhongguo#"
 替换字符

string

sResult

=

s Replace '# '

' '
Console WriteLine $"替换字符后

'

sResult

 '"

 "中国Zhongguo "
 替换子字符串

sResult

=

s Replace "Zhongguo"

"China"
Console WriteLine $"替换子字符串后

'

sResult

 '"

 "中国China#"

练一练:

“今晚月亮好圆好圆啊”.Replace(“圆”,”弯”)的结果是什么?
最后看提取类函数。

13.

Substring
该函数具有如下两种常用重载形式。

 public

string

Substring int

startIndex

public

string

Substring int

startIndex int

count

其中,第一种重载形式是从startIndex位置开始,提取此位置后所有的字符(包括当前

位置的字符);

第二种重载形式是从startIndex位置开始,提取count个字符。

 string

s

=

"精益求精练编程"
string

sResult

=

s Substring 2

Console WriteLine sResult 求精练编程

sResult

=

s Substring 2 2

Console WriteLine sResult 求精

117

14.

Split
该方法利用指定的字符作为分隔标记对字符串进行切割。其重载形式很多,较为典型

的重载形式如下。

 public

string

Split

 params

char

separator

该形式表示根据separator指定的 字 符 切 分 字 符 串,返 回 切 分 后 的 字 符 串 数 组。

separator可以是不包含分隔符的空数组或空引用。另外,由于参数由params修饰,因此调

用时可以直接传入各个用于切割的字符,而不必创建数组。
默认情况下,该函数遵从切西瓜原理,即一刀两段,两刀三段,n刀将得到n+1段。
这也是Split函数诸多重载中唯一的带params参数的版本。
看一个简单示例。

 string

s

=

"中国Zhongguo"
string

sSegs

=

s split 'n'

 "中国Zho"

"gguo"

可见,一刀(n)得到了2段。
练一练:

对如上字符串"中国Zhongguo",若采用字母o作为分隔标记进行切割将

得到什么?
现在看一个稍微复杂的例子。如果想从字符串s="a,b.6,,3_8,f."中取得各个字母和

数字,该如何办呢? 方法很简单,如以下代码所示。

 s="

a b 6 3_8 f "
string

t=s Split ' ' ' ' '_ '

 对应上述params参数版本

Console WriteLine t Length 8

 图5-2 字符串切割演示

运行程序,所得的数组有8个元素,如图5-2所示。
可见该方法可以有效切分出所需要的内容。但同时也有点小

问题,切割后的8个元素中,有两个空字符串。
注意到原始字符串中,6后面有两个连续的逗号,f后有个句

点,正是这两处导致最终结果中出现两个为空串的元素。
事实上,由于char数组必定是字符串数组,因而在不适用

params版本的情况下,另一种典型的重载形式如下。

 public

string

Split

 string

separator

StringSplitOptions

options

该重载形式利用指定的字符串数组元素进行切割,并可以通过StringSplitOptions控制

切割后是否删除由于切割而得到的空元素。
当第二个参数取值StringSplitOptions.None时,返回值可以包括含有空字符串的数组

元素。
当第二个参数取值StringSplitOptions.RemoveEmptyEntries时,其返回值不包括仅为

空字符串的数组元素。
例如,如下演示英文文本中英文单词的提取。

118

 string

s

=

"I

come

from

China I

am

a

student "

char

chars

=

new

char

' '

' '

'

'

string

sSeg

=

s Split chars

StringSplitOptions RemoveEmptyEntries

Console WriteLine string Join "\n"

sSeg

执行程序,最终得到的数组中包含所有单词。
此外,该函数的其他重载形式如下。

 public

string

Split

 char

separator

int

count

StringSplitOptions

options
public

string

Split

 string

separator

int

count

StringSplitOptions

options

下面看一个小的字符串示例,即如何从LRC歌词中分离出时间和相应的歌词。

 示例

LRC歌词解析-此处仅使用了4句歌词 不过同样也适用更多歌词的情况

string

s

=

" 00 36 00 记忆中的每一天\n 00 40 45 是最美丽的章节\n 00 43 69 揪心的思念\n
 00 46 92 堆积沉淀"
string

sLines

=

s Split '\n'
string

sTemp

=

null

sMinute

=

null

sSecond

=

null

sLrc

=

null
double

dTime

=

0
for

 int

i

=

0

i

sLines Length

i++

 sTemp

=

sLines i
 sMinute

=

sTemp Substring 1

2

 分钟

 sSecond

=

sTemp Substring 4

5
 sLrc

=

sTemp Substring 10

 dTime

=

Convert ToInt32

sMinute

*

60

+ double Parse

sSecond

 Console WriteLine "行 0

时间 1

歌词 2 "

i

+

1

dTime

sLrc

练一练:

设字符串s=“教育强国,科技强国,人才强国。”,请至少用三种方法,编程

实现s中“强国”个数的统计。

5.3.8 Stopwatch计时

在编程过程中,经常遇到需要统计程序耗时的情景。这可以通过Stopwatch来实现。
该类位于命名空间System.Diagnostics,其常用的属性和方法分别如表5-7和表5-8所示。

表5-7 Stopwatch常用属性

属 性 说 明

Elapsed 已经历了多久,为TimeSpan类型

ElapsedMilliseconds 已经历的毫秒数,long型

ElapsedTicks 已经历的Tick数,long型

IsRunning Stopwatch是否仍然在工作

119

表5-8 Stopwatch常用方法

方 法 说 明

Reset() 重置计时,即将表5-7中的属性置0
Restart() 重启计时

Start() 启动计时

Stop() 停止计时

若要统计某段程序的执行耗时情况,一种最简单的使用方式是,在该代码块的前面调用

Stopwatch实例对象的Start()方法,而在代码块的后面调用该实例对象的Stop()方法,此
时再读取其ElapsedMilliseconds等属性即可知道程序执行耗费了多少时间。

 static

void

Main string

args

 Stopwatch

sw

=

new

Stopwatch
 Console WriteLine "开始计时"
 sw Start
 int

s

=

0
 for

 int

i

=

0

i

10000000

i++
 s

+=

i
 sw Stop
 Console WriteLine "执行完毕 停止计时。程序执行耗时 0 毫秒" sw ElapsedMilliseconds

程序执行效果如图5-3所示。

图5-3 利用Stopwatch计时

5.3.9 StringBuilder与字符串高效操作

StringBuilder与string对象相比的最大好处在于,在对StringBuilder对象进行追加、
插入、替换、移除操作时,不会产生新对象,因此它适用于对字符串进行频繁操作的场合。

其最为常用的属性是Length,表征了字符串的实际长度。
其常用方法如表5-9所示。

表5-9 StringBuilder常用方法

方 法 说 明

Append() 用于将文本或者对象的字符串表示形式添加到当前对象的结尾处

AppendFormat() 用于对追加部分字符串进行格式化

AppendLine() 将指定字符串的副本和默认的换行符追加到当前对象的末尾

Clear() 从当前

StringBuilder实例中移除所有字符

Insert() 将指定的内容(字符、字符串)等插入当前实例中的指定位置

Remove() 将指定范围的字符从当前实例中删除

Replace() 将当前实例中指定的内容(字符、字符串)等替换为指定内容

ToString() 将当前的StringBuilder对象转换为字符串表达

120

示例如下。

 StringBuilder

sb

=

new

StringBuilder
sb

=

new

StringBuilder "酒逢知己饮"
sb AppendLine "

诗向会人吟"
sb AppendLine "人间四月天

麻城看杜鹃"
Console WriteLine sb ToString
sb Replace "人" "世"
Console WriteLine sb ToString

程序运行效果如图5-4所示。

图5-4 StringBuilder示例

5.3.10 Path类

Path类是一个静态工具类,位于System.IO命名空间中,用于处理文件路径和目录路

径。它提供了一系列静态方法,用于操作路径字符串,如获取文件名、获取扩展名、获取目录

名等,此外也可以用于获取操作系统中一些特殊的目录或临时文件名等。
其常用属性如表5-10所示。

表5-10 Path类常用属性

属 性 说 明

PathSeparator

表示当多个路径字符串连接在一起时,用于分割各个文件或目录路径的字符。
通常,当为搜索指定多个路径时,使用该属性。

Windows

使用的默认字符为分号(;)

InvalidPathChars 是一个数组,包含不能用于路径字符串的字符。已被弃用

DirectorySeparatorChar
表示用于分隔路径字符串中各目录间的字符。

Windows使用的默认字符为反斜杠(\);

在Linux和 macOS上,分隔符是/

VolumeSeparatorChar
表示用于将驱动器盘符与字符串路径的其余部分进行分隔的字符。

Windows使用的默认字符为冒号(:)

其常用方法较多,下面介绍其常用方法。
1.

Path.Combine
将多个字符串合并为一个路径。

 public

static

string

Combine params

string

paths

简单示例如下。

 string

path1

=

"C \\Users"
string

path2

=

"hfcas"
string

path3

=

"Documents"

121

 string

sResult

=

Path Combine path1

path2

path3
Console WriteLine sResult

 输出

C \Users\hfcas\Documents

2.

Path.GetFileName
获取路径中的文件名(包括扩展名)。

 public

static

string

GetFileName string

path

示例如下。

 string

path

=

"C \\Users\\hfcas\\Documents\\file txt"
string

sResult

=

Path GetFileName path
Console WriteLine sResult

 输出

file txt

3.

Path.GetFileNameWithoutExtension
获取路径中的文件名(不包括扩展名)。

 public

static

string

GetFileNameWithoutExtension string

path

示例如下。

 string

path

=

"C \\Users\\hfcas\\Documents\\file txt"
string

sResult

=

Path GetFileNameWithoutExtension path
Console WriteLine sResult

 输出

file

4.

Path.GetExtension
获取路径中的文件扩展名。

 public

static

string

GetExtension string

path

示例如下。

 string

path

=

"C \\Users\\hfcas\\Documents\\file txt"
string

sResult

=

Path GetExtension path
Console WriteLine sResult

 输出

 txt

5.

Path.GetDirectoryName
获取路径中的目录名。

 public

static

string

GetDirectoryName string

path

示例如下。

 string

path

=

"C \\Users\\hfcas\\Documents\\file txt"
string

sResult

=

Path GetDirectoryName path
Console WriteLine sResult

 输出

C \Users\hfcas\Documents

122

6.

Path.GetFullPath
将相对路径转换为绝对路径。

 public

static

string

GetFullPath string

path

示例如下。

 string

relativePath

=

"file txt"
string

sResult

=

Path GetFullPath relativePath

Console WriteLine sResult

 输出

C \My\Develop\WindowsFormsApp1\ConsoleApp1\bin\Debug\file txt

注意:

该方法不会检测文件的存在性。另外,其输出将根据具体情况而不同。

7.

Path.GetTempPath
获取系统的临时文件夹路径。

 public

static

string

GetTempPath

示例如下。

 string

sResult

=

Path GetTempPath
Console WriteLine sResult

 输出

C \Users\hfcas\AppData\Local\Temp\\

注意:

该方法的输出将根据具体情况而不同。

8.

Path.GetTempFileName
在系统的临时文件夹中创建一个唯一的临时文件,并返回其完整路径。

 public

static

string

GetTempFileName

示例如下。

 string

sResult

=

Path GetTempFileName
Console WriteLine sResult

 输出

C \Users\hfcas\AppData\Local\Temp\tmpCF0A tmp

注意:

该方法的输出将根据具体情况而不同。

9.

Path.ChangeExtension
更改路径中的文件扩展名。

 public

static

string

ChangeExtension string

path

string

extension

示例如下。

 string

path

=

"C \\Users\\hfcas\\Documents\\file txt"
string

newPath

=

Path ChangeExtension path

" docx"
Console WriteLine newPath

 输出

C \Users\hfcas\Documents\file docx

123

10.

Path.HasExtension
检查路径是否包含文件扩展名。

 public

static

bool

HasExtension string

path

示例如下。

 string

path1

=

"C \\Users\\hfcas\\Documents\\file txt"
string

path2

=

"C \\Users\\hfcas\\Documents\\file"
Console WriteLine Path HasExtension path1

 输出

True
Console WriteLine Path HasExtension path2

 输出

False

11.

Path.IsPathRooted
检查路径是否是绝对路径。

 public

static

bool

IsPathRooted string

path

示例如下。

 string

path1

=

"C \\Users\\hfcas\\Documents\\file txt"
string

path2

=

"bin\\file txt"
Console WriteLine Path IsPathRooted path1

 输出

True
Console WriteLine Path IsPathRooted path2

 输出

False

练一练:

请写出如下程序的输出或者对输出进行解释。

 string

path

=

@"C \Program

Files\ButSoft\Prince exe"
Console WriteLine Path GetDirectoryName path
Console WriteLine Path GetExtension path
Console WriteLine Path GetFileName path

Console WriteLine Path GetFileNameWithoutExtension path

Console WriteLine Path GetRandomFileName
Console WriteLine Path GetTempFileName

Console WriteLine Path GetTempPath

5.3.11 泛型集合List T
List T 是一个泛型集合类,位于System.Collections.Generic命名空间中,因此需要

应用该命名空间,与其对应的普通集合是ArrayList。它提供了一种类型安全且高效的方式

来存储和操作一组对象。List T 相当于一个动态数组,可以根据需要自动调整大小,支
持添加、删除、查找、排序等操作。

泛型集合具备类型安全的特点,操作高效,无须装箱和拆箱操作。

List T 集合常用属性如表5-11所示。

124

表5-11 List T 常用属性

属 性 说 明

Count 获取集合中元素的数量

Capacity 获取或设置集合的容量,该属性值不小于Count

注意:

正如杯子,其容量为50(Capacity),但实际可能只装了30(Count)。不过List
T 是一个容量可以根据需求自动扩充的神奇杯子。

对List T ,其中元素的访问方式类似于数组,即通过索引来访问。
对于各类集合而言,其相关方法主要是通过增、删、改、查、排、转来展开的。这6类方法

如表5-12所示。

表5-12 List T 常用方法

类 别 相

关

方

法

增
Add(T

item)、AddRange(IEnumerable T

collection)、Insert(int

index,T

item)、InsertRange(int

index,IEnumerable T

collection)

删
Remove(T

item)、RemoveAt(int

index)、RemoveRange(int

index,int

count)、

Clear()
改 List[i]

=

x

查
Contains(T

item)、IndexOf(T

item)、IndexOf(T

item,int

index)、LastIndexOf(T

item)、LastIndexOf(T

item,int

index)
排 Sort
转 ToArray

下面介绍List T 的这6类操作相关的方法。

1.

Add(T

item)
将单个元素添加到集合的末尾。

 List int

numbers

=

new

List int
numbers Add 10
numbers Add 20
Console WriteLine string Join "

"

numbers

 输出

10

20

2.

AddRange(IEnumerable T

collection)
将一组元素添加到集合的末尾。

 List int

numbers

=

new

List int

10

20

numbers AddRange new

int

30

40

Console WriteLine string Join "

"

numbers

 输出

10

20

30

40

3.

Insert(int

index,T

item)
在指定索引处插入元素。

 List int

numbers

=

new

List int

10

20

30

numbers Insert 1

15
Console WriteLine string Join "

"

numbers

 输出

10

15

20

30

125

4.

Insert(int

index,IEnumerable T

collection)
在指定索引处插入一组元素。

 List int

numbers

=

new

List int

10

20

30

numbers InsertRange 1

new

int

15

25

Console WriteLine string Join "

"

numbers

 输出

10

15

25

20

30

5.

Remove(T

item)
移除集合中第一个匹配的元素,即按内容来删。

 List string

fruits

=

new

List string

"Apple"

"Banana"

"Pear"

fruits Remove "Banana"
Console WriteLine string Join "

"

fruits

 输出

Apple

Pear

6.

RemoveAt(int

index)
移除指定索引处的元素,即按位置来删。

 List string

fruits

=

new

List string

"Apple"

"Banana"

"Pear"

fruits RemoveAt 1
Console WriteLine string Join "

"

fruits

 输出

Apple

Pear

7.

RemoveRange(int

index,int

count)
从指定索引处开始移除指定数量的元素,即按位置来批量删。

 List string

fruits

=

new

List string

"Apple"

"Banana"

"Pear"

"Peach"

fruits RemoveRange 1

2
Console WriteLine string Join "

"

fruits

 输出

Apple

Peach

8.

Clear
移除集合中的所有元素。

 List string

fruits

=

new

List string

"Apple"

"Banana"

"Pear"

fruits Clear
Console WriteLine "元素数量

"

+

fruits Count

 输出

0

9.

Contains(T

item)
查找集合是否包含指定元素。

 List string

fruits

=

new

List string

"Apple"

"Banana"

"Pear"

bool

containsBanana

=

fruits Contains "Banana"
Console WriteLine containsBanana

 输出

True

10.

IndexOf
该函数有两种常用重载形式。

IndexOf(T

item):

返回指定元素在集合中的第一个匹配项的索引,未找到则返回-1。

126

 List string

fruits

=

new

List string

"Apple"

"Banana"

"

Pear

"

int

index

=

fruits IndexOf "Banana"
Console WriteLine index

 输出

1

IndexOf(T

item,int

index):

从指定索引处开始查找指定元素,返回第一个匹配项的索

引,未找到则返回-1。

 List string

fruits

=

new

List string

"Apple"

"Banana"

"Pear"

"Banana"

int

index

=

fruits IndexOf "Banana"

2

Console WriteLine index

 输出

3

11.

LastIndexOf
该函数同样有两种常用重载形式。

LastIndexOf(T

item):

返回指定元素在集合中的最后一个匹配项的索引,未找到则返

回-1。

 List string

fruits

=

new

List string

"Apple"

"Banana"

"Pear"

"Banana"

int

lastIndex

=

fruits LastIndexOf "Banana"
Console WriteLine lastIndex

 输出

3

LastIndexOf(T

item,int

index):

从指定索引处开始向左查找指定元素,返回最后一个

匹配项的索引,未找到则返回-1。

 List string

fruits

=

new

List string

"Apple"

"Banana"

"Cherry"

"Banana"

int

lastIndex

=

fruits LastIndexOf "Banana"

2
Console WriteLine lastIndex

 输出

1

12.

Sort
对集合中的元素进行排序,默认为升序排列。

 List int

numbers

=

new

List int

5

3

8

1

9

numbers Sort
Console WriteLine string Join "

"

numbers

 输出

1

3

5

8

9

13.

ToArray
将集合转换为数组。

 List int

numbers

=

new

List int

1

2

3

int

array

=

numbers ToArray
Console WriteLine string Join "

"

array

 输出

1

2

3

下面是一个综合性的例子。

 using

System Collections Generic
static

void

Main

127

 创建一个

List int

集合

 List int

numbers

=

new

List int

 添加元素

 numbers Add 10
 numbers Add 20
 numbers AddRange new

int

30

40

 插入元素

 numbers Insert 1

15
 numbers InsertRange 3

new

int

25

35

 修改元素

 Numbers 3 =24

 输出集合

 Console WriteLine "集合内容

"

+

string Join "

"

numbers

 输出

10

15

20

24

 35

30

40

 移除元素

 numbers Remove 24
 numbers RemoveAt 2
 numbers RemoveRange 3

2

 输出集合

 Console WriteLine "移除后集合内容

"

+

string Join "

"

numbers

 输出

10

15

35

 查找元素

 bool

contains15

=

numbers Contains 15
 int

indexOf15

=

numbers IndexOf 15
 int

lastIndexOf15

=

numbers LastIndexOf 15

 Console WriteLine "是否包含15

"

+

contains15

 输出

True
 Console WriteLine "15的索引

"

+

indexOf15

 输出

1
 Console WriteLine "15的最后索引

"

+

lastIndexOf15

 输出

1

 排序

 numbers Sort
 Console WriteLine "排序后集合内容

"

+

string Join "

"

numbers

 输出

10

15

35

 转换为数组

 int

array

=

numbers ToArray
 Console WriteLine "数组内容

"

+

string Join "

"

array

 输出

10

15

35

 清空集合

 numbers Clear
 Console WriteLine "清空后集合内容

"

+

string Join "

"

numbers

 输出

5.3.12 Dictionary K,V 和 KeyValuePair K,V
泛型集合Dictionary K,V 是与普通集合Hashtable对应的版本,用于存储键值对型

128

数据,在

System.Collections.Generic

命名空间下。其中,键的取值一般以整型和字符串型

较为常见,且键一定不能有重复;

值的取值则非常广泛,可以是简单的值类型,也可以是内

置引用类型,还可以是自定义类型。

Dictionary K,V 中的元素操作涉及增加、删除、修改、查找、遍历等操作,其容量可以

自动动态调整。其中,其遍历又分为值的遍历、键的遍历、键值对元素遍历。键值对元素同

时遍历时,需要借助KeyValuePair K,V 来实现,KeyValuePair K,V 表达的正好就是

一个键值对元素,与Hashtable中元素遍历时的DictionaryEntry对应。

Dictionary K,V 和KeyValuePair K,V 是用于处理键值对的重要数据结构。它

们广泛应用于需要快速查找、存储和操作数据的场景。
其常用属性如表5-13所示。

表5-13 Dictionary K,V

常用属性

属 性 含 义

Count 获取字典中键值对的数量

Keys 获取包含字典中所有键的集合

Values 获取包含字典中所有值的集合

其常用方法主要围绕其中键值对数据的增加、删除、修改、查找来进行,介绍如下。
1.

Add(K

key,V

value)
向字典中添加一个新的键值对。如果键已存在,则会抛出异常。

 Dictionary string

int

students=

new

Dictionary string

int
students Add "小明"

20
students Add "大明"

30
Console WriteLine string Join "

"

students

 输出

 小明

20

 大明

30

2.

Remove(K

key)
移除具有指定键的键值对。如果键不存在,则返回false。

 Dictionary string

int

students

=

new

Dictionary string

int

"小明"

20

"大明"

30

bool

isRemoved

=

students Remove "小明"
Console WriteLine isRemoved

 输出

True
Console WriteLine string Join "

"

students

 输出

 大明

30

3.

ContainsKey(K

key)
检查字典中是否存在指定的键。

 Dictionary string

int

students

=

new

Dictionary string

int

"小明"

20

"大明"

30

bool

flag=

students ContainsKey "小明"
Console WriteLine flag

 输出

True

4.

ContainsValue(V

value)
检查字典中是否存在指定的值。

 Dictionary string

int

students

=

new

Dictionary string

int

"小明"

20

"大明"

30

bool

flag=

students ContainsValue 25
Console WriteLine flag

 输出

True

129

5.

TryGetValue(K

key,out

V

value)
尝试获取指定键的值。如果键存在,则返回true并输出值;

否则,返回false。

 Dictionary string

int

students

=

new

Dictionary string

int

"小明"

20

"大明"

30

if

 students TryGetValue "小明"

out

int

age
 Console WriteLine "小明的年龄是

"

+

age

 输出

小明的年龄是

20
else
 Console WriteLine "未找到

小明"

6.

Clear
移除字典中的所有键值对。

 Dictionary string

int

students

=

new

Dictionary string

int

"小明"

20

"大明"

30

students Clear
Console WriteLine "字典中的键值对数量

"

+

students Count

 输出

0

下面看一个相对综合的例子,其中除了演示如上几个方法,还演示了对字典中键的遍

历、值的遍历以及键值同时遍历。

 using

System Collections Generic
static

void

Main

 创建一个

Dictionary string

int

字典

 Dictionary string

int

students

=

new

Dictionary string

int

 添加键值对

 students Add "小明"

20
 students Add "大明"

30
 students Add "老明"

35

 输出字典内容 也就是键值对的同时遍历

 Console WriteLine "字典内容 "
 foreach

 var

kv

in

students
 Console WriteLine $" kv Key

 kv Value "

 修改

 students "小明" =25

 再次输出字典内容

 Console WriteLine "字典内容 "
 foreach

 var

kv

in

students
 Console WriteLine $" kv Key

 kv Value "

 遍历字典的键

 Console WriteLine "字典的键 "
 foreach

 string

key

in

students Keys
 Console WriteLine key

 遍历字典的值

 Console WriteLine "字典的值 "
 foreach

 int

value

in

students Values

130

 Console WriteLine value

 移除键值对
 bool

flag

=

students Remove "大明"
 Console WriteLine "是否成功移除

大明

"

+

flag

 输出

True

 检查键是否存在
 flag

=

students ContainsKey "小明"
 Console WriteLine "字典中是否包含

小明

"

+

flag

 输出

True

 检查值是否存在
 flag

=

students ContainsValue 35
 Console WriteLine "字典中是否包含年龄

35

"

+

flag

 输出

True

 尝试获取值
 if

 students TryGetValue "老明"

out

int

age
 Console WriteLine "老明

的年龄是

"

+

age

 输出

老明

的年龄是

35
 else
 Console WriteLine "未找到

老明"

 清空字典
 students Clear
 Console WriteLine "清空后键值对数量

"

+

students Count

 输出

0

运行结果如图5-5所示。

图5-5 Dictionary K,V 示例运行结果

5.4 拓展知识点

5.4.1 Windows

Media

Player组件的引用

 Windows

Media

Player是一个常用于音视频等媒体文件播放的组件,功能强大,使用

简单。在系统中有很多类似的组件,都可以通过引用而简化开发。因此,此处特地将完整的

过程进行呈现。

131

首先打开需要引用相关组件或控件的项目,然后打开其工具箱,在工具箱空白处单击右

键,单击“选择项”命令,如图5-6所示。

图5-6 添加引用之“选择项”

在弹出的对话框中,根据需要选择相关选项,如相关组件。本例选择 Windows

Media

Player,如图5-7所示。

图5-7 添加引用之选择组件

132

单击“确定”按钮即完成组件的添加,并显示于工具箱中,如图5-8所示。
此后,就可以像工具箱中其他的组件或控件一样使用了。当将该组件添加到窗体中时,

将会自动添加两个引用,如图5-9所示。

图5-8 添加引用之添加至工具箱

图5-9 组件拖到窗体后自动添加的两个引用

此时,在编写代码时,在代码顶部添加如下引用。

 using

AxWMPLib
using

WMPLib

5.4.2 使用 Windows

Media

Player实现音频播放控制

Windows

Media

Player控件提供了丰富的多媒体处理功能,使得开发者可以轻松地在

应用程序中集成音频和视频播放功能。不过,本案例仅对其做最为基本的介绍。具体而言,
典型的如实现音频文件的打开、播放、暂停、停止、音量调节以及播放进度等功能。

如下讲解均假设 Windows

Media

Player控件被命名为Player。
注意:

在仅播放音频的情况下,一般应将 Windows

Media

Player的Visible属性设

置为false。

1.

音频播放、暂停与停止

 Player URL

=

sFile
Player Ctlcontrols play 播放

Player Ctlcontrols pause 暂停

Player Ctlcontrols stop 停止

2.

音频媒体当前进度和总时长获取

 double

dDuration

=

Player currentMedia duration

 总时长

doubule

dCurrent

=

Player Ctlcontrols currentPosition

 当前播放位置

133

3.

音量控制

音量控制是指改变音频的播放音量。可以通过调整 Windows

Media

Player控件的

Volume属性实现音量的调整。

 获取当前音量

int

volume

=

Player settings volume
 设置音量

Player settings volume

=60

 60%音量

5.4.3 LRC歌词格式

LRC是一种用于存储和显示同步歌词的文本文件格式。它通过在歌词文本中嵌入时

间标签(timestamps),实现了歌词与音频播放的精确同步。LRC文件通常与音频文件(如

MP3、WAV)同名,并存放在同一目录下。LRC格式广泛应用于音乐播放器、卡拉OK系统

以及各种多媒体应用中,为用户提供歌词滚动显示的功能。

LRC文件由以下两部分组成。

•

元数据标签(可选):

如[ti:标题],[ar:艺术家],[al:专辑],[by:制作人],[offset:偏
移量]等。

•

歌词文本:

每行歌词前有一个或多个时间标签,表示该行歌词的开始时间。
下面分别介绍。

1.

时间标签及歌词

时间标签用于表示歌词中每个单词或每行歌词的开始时间。常见的时间标签格式有两

种,如下仅介绍简单的时间标签。

 格式

 mm ss xx

其中:

•

mm:

分钟(00~59)。

•

ss:

秒(00~59)。

•

xx:

百分之一秒(00~99)。
示例:

 00 12 00

歌词第一行

 00 17 20

歌词第二行

2.

元数据标签

LRC

文件可以包含多个元数据标签,用于描述歌词的元信息。常见的元数据标签

如下。

•

[ti:标题]:

歌曲标题。

•

[ar:艺术家]:

艺术家名称。

•

[al:专辑]:

专辑名称。

•

[by:制作人]:

歌词制作人。

134

•

[offset:偏移量]:

时间偏移量(以ms为单位),用于调整歌词与音频的同步。
示例如下。

 ti 歌曲标题
 ar 艺术家名称
 al 专辑名称
 by 制作人
 offset 100

例如,如下是经典《西游记》片尾曲《敢问路在何方》的LRC歌词。

 00 00 00 敢问路在何方

 00 08 00 作词

阎肃

 00 15 00 作曲

许镜清

 00 20 00
 00 22 50 你挑着担

我牵着马

 00 29 70 迎来日出

送走晚霞

 00 37 10 踏平坎坷

成大道

 00 44 30 斗罢艰险

又出发

又出发

 00 51 80 啦啦……啦啦啦啦啦啦啦啦

 01 06 60 一番番春秋冬夏

 01 13 80 一场场酸甜苦辣

 01 21 10 敢问路在何方

路在脚下

 01 38 60
 01 41 10 你挑着担

我牵着马

 01 48 30 翻山涉水

两肩霜花

 01 55 60 风云雷电

任叱咤

 02 02 90 一路豪歌

向天涯

向天涯

 02 10 40 啦啦……啦啦啦啦啦啦啦啦

 02 25 20 一番番春秋冬夏

 02 32 40 一场场酸甜苦辣

 02 39 70 敢问路在何方

路在脚下

 02 57 20
 02 59 70 啦啦……啦啦啦啦啦啦啦啦

 03 14 50 一番番春秋冬夏

 03 21 70 一场场酸甜苦辣

 03 29 00 敢问路在何方

路在脚下

 03 46 50 敢问路在何方

路在脚下

由于LRC歌词是纯文本,因此可以自行解析。
另外,由于LRC文本程序明显的规律,因此一般都可以采用正则表达式进行解析。不

过本案例中采用字符串函数来解析。此处不再赘述。

5.5 案

例

分

析

该案例主要分为音频播放、进度显示、歌词解析、音频与歌词文件的自动匹配、歌词同

步,简述如下。

1.

音频播放

•

使用 Windows

Media

Player控件实现音频播放。

135

•

提供播放、暂停、停止等基本控制功能。

2.

进度显示

•

使用ProgressBar控件显示播放进度。

•

通过Timer组件定时更新ProgressBar控件的值,实现进度的实时显示。
假设做某事的总量为X,当前的进度是做到了x,因为ProgressBar控件的默认最小值

(Minimum)为0,最大值(Maximum)为100,代表进度的是属性Value,因此很容易计算出

Value=100x/X,不过需要注意整除的问题。
此外,还有一种极其简单的处理方式,即将ProgressBar的 Maximum属性赋值为任务

总量X,则其属性Value=x。
通过Timer组件定时更新ProgressBar控件的值,实现进度的实时显示。

3.

歌词解析

•

使用字符串处理函数解析LRC歌词文件,提取时间和歌词信息。

•

使用List T 存储解析后的时间和歌词。

•

使用Timer组件定时获取当前播放时间点,查找对应的歌词并显示,实现歌词与音

频的同步显示。

LRC歌词本质上就是一个文本文件,且具备固定的格式,因此对歌词文件的解析即通

过字符串函数对字符串进行操作,从其中抽取指定的信息。LRC歌词每一行的格式大致

如下。

 01 02 50 《C#程序设计》教学示范

需要从其中分析出时间和歌词两项信息。这可以从多种途径来获得。例如:

思路1:

先将整个歌词按换行符分割,所得每一行即如上述示例歌词所示。在上述歌词

中,格式完全固定,即第2、3位为分钟部分,第5~9位为秒数部分,从第11位开始为歌词部

分。而从字符串中取出指定位置的内容使用Substring函数即可。
思路2:

一次切割到位。利用字符 '[',':',']','\n'来进行切割(Split),将得到形如“分钟

秒

歌词

分钟

秒

歌词…”的数组,很明显,按3为递增周期即可获取时间和歌词了。
另外,本案例中用来存储时间和歌词是通过List T 来完成的。

4.

音频与歌词文件的自动匹配

•

使用Path类获取音频文件的目录和文件名。

•

根据音频文件名自动查找对应的歌词文件,支持歌词文件与音频文件位于同一目录

或固定目录的情况。
具体而言,可以通过其GetDirectoryName方法获取目录;

通过GetExtension获取文件扩

展名;

通过GetFileName获取包括扩展名的文件名;

通过GetFileNameWithoutExtension获取

不带后缀的文件名等。
一般歌词要么和音频文件放置于同一个文件夹,要么放置于一个固定的文件夹,且和对

应的音频文件同名。无论哪种情况,只要将音频文件的扩展名替换为歌词文件的扩展名,然
后结合路径(文件夹)信息,即可获得相应的歌词文件全路径。例如,若音频的全路径为C:\
Music\娃哈哈.mp3,歌词集中存放文件夹为C:\Lyrics\,则对应歌词文件可能为C:\Music\娃
哈哈.lrc或C:\Lyrics\娃哈哈.lrc。

136

5.

歌词同步

本项目使用的方式是:

在Timer_Tick中通过 Windows

Media

Player的Ctlcontrols.
currentPosition获取当前播放的时间点,然后通过该时间去分析获取当前时间点应该显示

的歌词,将其显示出来,从而实现歌词同步。
注意:

本项目为了简单,不过多涉及 Windows

Media

Player控件,而将重心集中在

书本相关知识点方面,因此并未涉及该控件的诸多事件如PlayStateChange等,而
是使用了不太常规的但对通过教材来学习的读者来说更易理解的方式来实现。

5.6 控 件

相关控件及属性设置如表5-14所示。

表5-14 相关控件及属性设置

名称及类型 属 性 属 性 值 作 用

Form1
Text 音频播放器

StartPosition CenterScreen 启动时屏幕居中

label1
AutoSize False 用于显示歌词

TextAlign MiddleCenter
button1 Text 打开 选择待播放的文件

progressBar1 用于显示播放进度

trackBar1
Maximum 100 最大音量

TickStyle None 不需要刻度

openFileDialog1 用于选择音频文件

timer1 实现进度和歌词同步

Player(Windows

Media

Player) Visible False 播放控件

5.7 核

心

代

码

该项目的核心在于实现对歌词的解析,解析类LRCParser的代码如下。

 class

LRCParser

 private

List double

listTimes

=

new

List double

 存储分解后的时间

 private

List string

listLRCs

=

new

List string 存储分解后的歌词

summary

分析传入的歌词 将其分解为时间和对应的歌词两个列表

 summary

param

name="sLRC" 歌词 param
 public

LRCParser string

sLRC

 歌词示例

 00 00 00 《C#程序设计》教学示范

 string

sLines

=

sLRC Split '\n'
 string

sLine

=

null

137

 string

sMin

=

null

sSec

=

null

sL

=

null
 double

dTemp

=

0
 for

 int

i

=

0

i

sLines Length

i++ 逐行处理

 sLine

=

sLines i
 sMin

=

sLine Substring 1

2 获取分钟部分

 sSec

=

sLine Substring 4

2 获取秒数部分

 sL

=

sLine Substring 10 获取歌词

 dTemp

=

60

*

Convert ToInt32 sMin

+

Convert ToDouble sSec
 listTimes Add dTemp
 listLRCs Add sL

summary

根据传入的时间 获取该时间点应该显示的歌词

 summary

param

name="dTime" 所传入的时间 param

returns 返回值为所传入时间对应的歌词 returns
 public

string

GetLrcByTime double

dTime

 string

sRet

=

null
 for

 int

i

=

listTimes Count

-

1

i

=

0

i--

 if

 dTime

listTimes i

 sRet

=

listLRCs i
 break

 return

sRet

下面是窗体中的代码,首先是变量声明,代码如下。

 LRCParser

parser

=

null

“打开”按钮用于选择待播放的文件,然后播放,其核心代码如下。

 private

void

Button1_Click object

sender

EventArgs

e

 分别代表待播放文件、歌词文件、音频文件扩展名、歌词

 string

sFile

=

null sLrcFile=null sExt=null sLrc=null
 DialogResult

dlgResult

=

openFileDialog1 ShowDialog
 if

 dlgResult

==

DialogResult OK

 sFile

=

openFileDialog1 FileName

 待播放的文件

 根据音频文件自动处理同目录下的歌词文件

 sExt

=

Path GetExtension sFile 获取当前音频文件扩展名

 sLrcFile

=

sFile Replace sExt

" lrc"

138

 if

 File Exists sLrcFile

 sLrc

=

File ReadAllText sLrcFile

Encoding Default 注意编码

 parser

=

new

LRCParser sLrc 解析歌词

 Player URL

=

sFile
 Player Ctlcontrols play 开始播放

 timer1 Interval

=

50

 开启定时器

 timer1 Enabled

=

true

 else

 label1 Text

=

"没有匹配的歌词文件"

上面只是实现音频文件播放,歌词的同步是靠定时器实现的,代码如下。

 private

void

Timer1_Tick object

sender

EventArgs

e

 label1 Text

=

parser GetLrcByTime Player Ctlcontrols currentPosition
 progressBar1 Maximum

=

Convert ToInt32 Player currentMedia duration
 progressBar1 Value

=

Convert ToInt32 Player Ctlcontrols currentPosition

音量调整代码如下。

 private

void

trackBar1_Scroll object

sender

EventArgs

e

 Player settings volume

=

trackBar1 Value

程序运行效果如图5-10所示。

图5-10 音频播放器运行效果

5.8 思

考

拓

展

(1)

实现5.5节中的另外几种思路,包括ProgressBar控件的进度问题,以及歌词的解

析思路。
(2)

本项目中使用的LRC歌词较为理想化,即没有LRC歌词前不带时间戳的那些行,

139

也不考虑某些带循环特征的歌词,不过和本例相比并无本质的难度差异,请自行实现。
(3)

在上述案例的基础上,实现列表播放,如顺序播放、随机播放等。
(4)

利用 Windows

Media

Player控件的诸多事件如PlayStateChange等以及其属性

currentPlaylist等实现一个列表播放的播放器。

5.9 总 结

通过本案例,读者不仅学习了 Windows

Forms应用程序中媒体播放功能的实现,还学

习了ProgressBar控件、字符串处理函数、Path类、泛型集合List T 、Timer组件和对话

框的使用。通过解析LRC歌词文件,读者能够实现歌词与音频的同步显示。此外,通过思

考和拓展,读者可以在现有基础上进一步优化和扩展功能,提升音频播放器的功能性和用户

体验。

