





作者:张晓雷
定价:168元
印次:1-3
ISBN:9787302590002
出版日期:2022.01.01
印刷日期:2022.11.01
图书责编:刘向威
图书分类:学术专著
语音降噪处理是信号处理的重要分支领域。近年来,该领域在人工智能与深度学习技术的驱动下取得了突破性进展。本书系统总结语音降噪处理的深度学习方法,尽可能涵盖该方法的前沿进展。全书共分8章。第 1章是绪论;第 2章介绍深度学习的基础知识和常见的深度网络模型;第 3~6章集中介绍基于深度学习的语音降噪处理前端算法,其中,第 3章介绍语音检测,第4章介绍单通道语音增强,第5章介绍多通道语音增强,第6章介绍多说话人语音分离;第7章和第 8章分别介绍基于深度学习的语音降噪处理在声纹识别和语音识别方面的应用,其中着重介绍基于深度学习的现代声纹识别、语音识别基础和前沿进展。 本书专业性较强,主要面向具备一定语音信号处理和机器学习基础、致力于从事智能语音处理相关工作的高年级本科生、研究生和专业技术人员。
张晓雷,西北工业大学教授,博导,入选国家千人计划青年项目、陕西省百人计划青年项目。清华大学博士、美国俄亥俄州立大学博士后。从事声信号与语音处理,机器学习,人工智能的研究工作。在Neural Networks、IEEE TPAMI、IEEE TASLP、IEEE TCYB、IEEE TSMCB等期刊、会议发表论文50余篇。合著译著1部。承担国家重点研发计划、国家自然科学基金重点项目等省部级以上项目10余项。论文“Multilayer Bootstrap Networks”获得国际神经网络学会与国际**期刊《Neural Networks》联合授予的2020年度****论文奖。获得亚太信号与信息处理学会杰出讲者称号、UbiMedia 2019国际会议**论文奖、北京市科学技术一等奖、教育部科技成果完成者荣誉称号。研究成果在国内三大电信运营商、金融、交通、保险等行业的20余家主流企业成功应用。
前言 自 2012年美国俄亥俄州立大学汪德亮教授等提出基于深度学习的鲁棒语音处理以来,语音降噪处理的深度学习方法迅速成为鲁棒语音处理的主流方法之一,在学术界和工业界的共同努力下,得到了快速发展。语音降噪处理的深度学习方法从最开始只能在匹配的噪声、匹配的信噪比环境下取得一个研究点上的突破,发展到能够在复杂的现实噪声场景和极低信噪比环境下获取惊人的性能;从最开始需要深度置信网络进行分层预训练才能训练成功,发展到今天可以没有难度地训练任意深度的深层网络;从最开始算法时延高达数十毫秒,发展到今天在没有性能显著损失的条件下能够满足实时通信的需求;从最开始的单通道(单麦克风)信号处理,发展到今天可以对由任意多个麦克风组成的自组织网络信号进行联合处理;等等。基于深度学习的鲁棒语音处理技术也在快速步入实际使用,并在智能家居、智能车载、智能语音客服、会议记录等应用方面创造了巨大的产业价值。 尽管该技术发展迅速,但是相关的中文书籍匮乏。对此,本书将以中文首次全面介绍基于深度学习的鲁棒语音处理的发展,具体内容包括语音检测、语音增强、语音去混响、多说话人语音分离、鲁棒声纹识别与鲁棒语音识别。本书侧重对历史的回顾,帮助读者梳理该方向的技术发展脉络和趋势;并着重介绍在实际使用中性能突出的代表性方法,帮助读者快速熟悉该方向的主要技术。 全书共分 8章。第 1章是绪论;第 2章介绍深度学习的基础知识和常见的深度网络模型;第 3~ 6章集中介绍基于深度学习的语音降噪处理前端算法,其中,第 3章介绍语音检测,第 4章介绍单通道语音增强,第 5章介绍多通道语音增强,第 6章介绍多说话人语音分离;第 7...
目录
第 1章绪论 .........................................................................................1
第 2章深度学习基础 ............................................................................5
2.1有监督学习................................................................................ 5
2.2单层神经网络 ............................................................................ 6
2.2.1基本模型 ........................................................................ 6
2.2.2激活函数 ........................................................................ 7
2.3前馈深度神经网络.....................................................................10
2.3.1反向传播算法.......................................... 查看详情