





定价:99元
印次:1-1
ISBN:9787302673484
出版日期:2024.10.01
印刷日期:2024.09.26
图书责编:夏毓彦
图书分类:零售
"公共医学数据库的应用越来越广泛,利用这些数据库进行论文写作可以显著减少研究成本和时间。《R语言医学数据分析实践》以公共医学数据为例,讲解如何使用R语言进行数据挖掘和统计分析。《R语言医学数据分析实践》通过大量精选的实例,对统计分析方法进行了深入浅出的介绍,旨在帮助读者解决医学数据分析中遇到的实际问题。《R语言医学数据分析实践》配套提供示例源码、PPT课件、作者微信群答疑服务。 《R语言医学数据分析实践》共分为12章,内容包括R语言介绍、R语言基本语法、R语言数据清洗、R语言数据可视化、R语言统计建模分析方法、R语言机器学习实战入门、列线图在预测模型中的应用、临床数据挖掘中的生存分析、NHANES 数据库挖掘实战、GEO数据库挖掘实战、孟德尔随机化分析实战、单细胞测序实战。 《R语言医学数据分析实践》适用于临床医学、公共卫生及其他医学相关专业的本科生和研究生使用,也可作为其他专业的学生和科研工作者学习数据分析的参考书。阅读本书,读者不仅能够掌握使用R语言及相关包快速解决实际问题的方法,还能更深入地理解公共医学数据库挖掘的实战精髓。"
"李丹,福建医科大学附属协和医院消化内科主任医师,教授,博士生导师,福建省高层次人才,福建省青年五四奖章、福建省青年科技奖获得者。中华医学会消化病分会青年委员。以通讯作者或第一作者身份发表SCI论文16篇。宋立桓,曾服务于微软中国有限公司,国内互联网头部企业解决方案资深架构师,专注于人工智能和大数据挖掘分析,拥有多项人工智能发明专利。著有《Python深度学习从零开始学》《云原生构建数字世界》《MySQL性能优化和高可用架构实践》《PyTorch深度学习与企业级项目实战》等科技著作。蔡伟祺,福建医科大学协和临床医学院2022级专业学位硕士研究生,精通R语言和公共医学数据库挖掘。"
前 言 传统临床研究设计方法论产生的前提,是当时无法处理的海量临床数据,以及无法考察全集而必须抽样。无论是随机对照试验还是队列研究,其核心技术本质上都是围绕恰当的抽样设计而展开的。然而,由于疾病本身的复杂性和患者个体之间不可避免的差异性,随机对照试验和队列研究所揭示的真相是有限的。虽然扩大样本量可以减少异质性,但样本量的增加带来的异质性减少呈边际递减趋势,而成本却呈数量级上升。 随着计算机科学的进步,我们对临床数据的记录和处理能力已经远非20世纪80年代的研究者所能想象。但是,在利用计算机工具对这些海量数据进行清洗、建模和计算时,旧有的、适用于传统临床设计的统计工具已经无法胜任。这需要更为强大的计算机语言来实现。这种语言不仅能够用于假设和猜想的验证,还能在没有假设和猜想时,通过对数据进行模式识别来提取海量临床数据中的重要信息。这种模式识别分析方法对分析工具的灵活性要求很高,传统的固定分析软件难以实现。 R语言比现有商业化软件更适用于临床数据挖掘的新分析模式。在未来医学统计的工具中,R语言必将占有一席之地。特别是在公共医学数据库的应用日益广泛的背景下,基于这些数据库来撰写论文,不需要自己进行实验或采集数据,从而可以减少研究成本和时间。通过挖掘现有的临床大数据来发现新思路,也是一种有效的研究手段。目前,许多国际权威的公共医学数据库平台都鼓励医学科研人员使用R语言进行数据挖掘和科学研究。这些数据库中的数据来源可靠,样本量大,而且不用担心原始数据追溯和伦理等问题。 关于本书 培养精通数据挖掘、人工智能等新一代信息技术的未来医生,是时代赋予医科院校的重要使命。推进医学...
第1章 R语言介绍 1
1.1 R语言概述 1
1.1.1 什么是R语言 1
1.1.2 临床医生使用R语言的优势 1
1.2 R编程环境的搭建 2
1.2.1 R语言的下载和安装 3
1.2.2 RStudio的下载和安装 5
1.2.3 RStudio操作 6
1.3 R语言包 8
1.3.1 什么是R包 8
1.3.2 R包的安装 8
1.4 初识R语言的注意事项 9
第2章 R语言的基本语法 11
2.1 R语言的数据结构 11
2.1.1 向量 11
2.1.2 矩阵 13
2.1.3 数组 15
2.1.4 数据框 16
2.2 R语言函数简介 17
2.2.1 函数的定义 17
2.2.2 常用内置函数的使用 18
2.3 R语言中的数据读写 19
2.3.1 读取文件 19
2.3.2 写入文件 20
2.3.3 读写其他数据文件 21
2.4 R语言流程控制 21
2.4.1 判断语句 21
2.4.2 循环语句 23
2.5 字符串操作 24
2.6 R语言数据保存 26
第3章 R语言数据清洗 27
3.1 数据清洗的重要性 27
3.2 数据质量评估 28
3.3 数据清洗 30
3.3.1 缺失值检查及处理 30
3.3.2 异常值检查及处理 32
3.3.3 重复值检查及处理 34
3.4 数据清洗dplyr包的使用 34
3.5 数据清洗实战 37
第4章 R语言数据可视化... 查看详情
《R语言医学数据分析实践》力求以通俗易懂的方式,详细介绍R语言的基础知识和公共医学数据库挖掘,同时通过实际操作引导读者入门医学科研论文中的数据分析。"