目录
第1章绪论
1.1康复工程的研究与发展
1.1.1人体功能障碍的类型和康复途径
1.1.2康复工程学的研究基础
1.1.3康复工程技术进展
1.2生物机械学的研究
1.2.1机械学与生物机械学
1.2.2生物机械学与生物力学
1.2.3生物机械学的研究内容
1.3康复工程中的生物机械学研究
1.3.1人体运动的生物机械学模型及应用
1.3.2人体运动行为的结构与协调性研究
1.3.3人机交互原理与方法
1.3.4人机界面的分析与设计
1.3.5人机系统中机械系统对生理功能的影响
1.3.6人机一体化系统设计
1.3.7人体运动功能检测与评定
1.4本书内容介绍
参考文献
第2章人体运动功能的描述与评定
2.1基于图像识别技术的人体运动轨迹检测
2.1.1标志点图像识别技术
2.1.2二维图像的三维重构法
2.2人体地面反力检测
2.2.1足底压力分布检测
2.2.2三维合力检测
2.3表面肌电信号检测与处理
2.3.1模拟放大电路
2.3.2数字滤波处理
2.3.3sEMG分析和特征提取方法
2.4人体上肢运动功能描述与评价
2.4.1臂部关节运动的协调性
2.4.2臂部运动质量评定
2.4.3人手握物时受扰恢复能力
2.5人体行走功能评定
2.5.1人体步态对称性评价指标
2.5.2步态对称性指标的应用
2.6人体平衡功能描述与评定
2.6.1用重心轨迹变化描述平衡能力与评定指标
2.6.2人体平衡功能评价方法的应用
参考文献
第3章人体受外界干扰时的平衡策略
3.1基于能量分析的人体稳定性度量
3.1.1向前翻转的稳定性度量——稳定裕量
3.1.2向后翻转的稳定裕量
3.1.3不同初始条件下的稳定裕量
3.1.4动力学稳定域
3.1.5影响稳定性的相关因素
3.1.6双足步行过程中的稳定性分析
3.2人体站立受扰时恢复平衡的生物机械学分析
3.2.1受扰强度的度量
3.2.2不同扰动强度下的平衡恢复策略
3.2.3站立受扰平衡恢复过程中各关节的贡献
3.2.4单跨步平衡恢复时最小跨步长
3.3人体自然步态下意外滑动的危险性
3.3.1与意外滑动相关的步态参数
3.3.2健全人与假肢使用者意外滑动危险性的差异性
3.4人体发生意外滑动时的平衡恢复策略
3.4.1研究平衡恢复策略的实验与分析方法
3.4.2健全人意外滑动时的平衡恢复策略
3.4.3单侧大腿假肢穿戴者的平衡恢复策略
3.4.4意外滑倒时的两阶段平衡策略
3.5人体滑倒过程中的关节力矩分析
3.5.1多刚体模型的建立
3.5.2系统动力学方程
3.5.3滑倒时关节力矩计算
3.6基于平衡恢复策略的假肢安全性
3.6.1通过改善步态降低滑动危险性
3.6.2通过康复训练提高应急反应能力
3.6.3增加假肢的防滑倒功能
3.6.4滑倒预警措施
参考文献
第4章人体关节系统生物机械学特性的描述与应用
4.1神经肌肉运动控制的生理基础与工程描述
4.1.1运动控制的层次结构与脊髓反射
4.1.2肌电图与肌电诱发响应
4.1.3肌肉收缩的生物机械学模型
4.1.4关节负载系统的生物机械学模型
4.1.5考虑脊髓反射的生物机械学模型
4.2肢体运动主要生物机械学特性的测量
4.2.1肢体运动学参数的测量
4.2.2肌肉力量与关节机械力矩的测量
4.2.3机械动力学参数测量与关节动态特性测试
4.3关节系统生物机械学模型与参数辨识
4.3.1关节系统运动的控制模型
4.3.2系统辨识实验设计
4.3.3模型参数的估计方法
4.3.4神经肌肉反射特性的辨识方法
4.4关节系统生物机械学模型的应用
4.4.1正常人膝关节生物机械学参数的对比
4.4.2肌肉痉挛对神经肌肉动力学特性的影响
4.4.3利用神经肌肉反射特性对痉挛患者进行分级评估
参考文献
第5章膝关节的生物力学分析及应用
5.1膝关节模型的建立与发展
5.2基于医学图像的三维活体膝关节模型
5.2.1膝关节医学图像源及参数选择
5.2.2膝关节三维活体模型的建立
5.2.3膝关节三维模型的导出与有限元模型的建立
5.3不同载荷下膝股胫关节的生物力学特性
5.3.1膝股胫关节各组织材料参数及边界条件
5.3.2采用Abaqus软件的有限元分析
5.3.3不同载荷下股胫关节的生物力学特性
5.4半月板对股胫关节生物力学特性的影响
5.4.1半月板全部切除对膝关节生物力学特性的影响
5.4.2半月板单侧切除对膝关节生物力学特性的影响
5.4.3半月板组织参数与连接位置对膝关节生物力学
特性的影响
5.5股胫关节相对位置对膝关节生物力学特性的影响
5.5.1股胫关节水平面角度的影响
5.5.2股胫关节冠状面角度的影响
5.5.3股胫关节冠状面与水平面角度的联合影响
5.6膝关节韧带力学机制分析
5.6.1膝关节前移时韧带的限制作用
5.6.2膝关节后移时韧带的限制作用
参考文献
第6章上肢假肢系统的生物机械学原理与功能仿生设计
6.1人体上肢的解剖结构和运动功能
6.2人体上肢肌骨系统运动生物力学分析
6.2.1上肢关节的运动范围
6.2.2上肢的运动机理和运动冗余问题
6.3上肢假肢的生物机械学模型
6.4肌电控制的假手结构分析与功能仿生设计
6.4.1肌电假手的仿生结构分析与传动计算
6.4.2仿生假手的肌电控制
6.5仿生假手的智能感觉系统
6.5.1大闭环力感觉反馈
6.5.2小闭环触滑觉反馈
6.6多关节仿生手指机构的运动分析
6.6.1人手指的生理参数和运动规律表达式
6.6.2手指机构运动分析与轨迹方程
6.7六杆仿生手指机构优化设计
6.7.1设计变量(广义坐标)
6.7.2优化设计的约束条件
6.7.3优化设计数学模型及其求解
6.8假肢肘关节仿生机构
6.8.1人体肘关节的驱动原理和等效机构模型
6.8.2肘关节机构运动分析
6.8.3机构力分析
6.9肘关节机构优化设计
6.9.1肘关节机构设计变量
6.9.2优化设计目标函数
6.9.3约束函数
6.9.4优化设计数学模型和优化结果
参考文献
第7章下肢运动的生物机械学分析与应用
7.1概述
7.2步行时下肢摆动期的生物机械学分析
7.2.1摆动期力学模型与动力学方程
7.2.2动力学方程的应用
7.3不同路况下步态特征与关节力矩
7.3.1不同路况的步态特征
7.3.2不同路况下关节力矩
7.3.3健全者与大腿假肢穿戴者步态的差异性
7.4跖趾关节屈伸对步态的影响
7.4.1实验方法
7.4.2实验结果
7.4.3步态异常的原因
7.5下肢肌骨模型与步行时的肌肉力
7.5.1下肢肌肉骨骼模型与动力学方程
7.5.2肌肉腱的结构模型及参数
7.5.3关节被动力矩
7.5.4摆动期肌肉力
7.5.5支撑期肌肉力
7.5.6仿真计算与肌电信号对比
7.6四杆机构膝关节性能分析
7.6.1支撑期的稳定协调区
7.6.2四杆机构膝关节的稳定协调性
7.6.3摆动期踝关节升高量
7.6.4四杆机构膝关节的控制力矩
7.7六杆机构膝关节性能分析
7.7.1六杆机构膝关节的构成
7.7.2六杆机构瞬停节与假肢膝关节稳定性
7.7.3六杆机构膝关节运动学设计
7.7.4六杆机构膝关节的动力学分析
7.7.5优化后的六杆机构膝关节性能试验
7.8智能下肢假肢力矩控制装置
7.8.1气动力矩控制装置
7.8.2摩擦锥式阻力矩控制装置
7.9储能式下肢假肢的原理与性能
7.9.1用步态分析法测定放储能量比s
7.9.2储能假肢动力学性能分析的有限元法
7.9.3材料力学特性和外力变化对储能性的影响
参考文献
第8章小腿假肢装配中人机界面的生物机械学分析
8.1概述
8.2人机界面压力的研究方法
8.2.1人机界面压力的试验测量
8.2.2人机界面压力的数值仿真
8.3接受腔残肢人机界面生物力学模型
8.3.1残端接受腔一体化模型——有限元法
8.3.2步行中运动学参数和动态载荷的确定
8.4接受腔残肢人机界面力学参数测量
8.5接受腔残端界面压力的理论计算与实测结果
8.5.1残肢表面预压力和站立状态静压力
8.5.2行走过程中界面压力计算和实验测量结果
8.5.3考虑惯性载荷和关节角度变化时的界面压力
8.6各种因素对界面应力的影响
8.6.1路面状况对界面应力的影响
8.6.2步速对界面压力的影响
8.6.3假肢装配时对线调整对界面压力的影响
参考文献
第9章功能性矫形器原理和动力式步态矫形器仿生设计
9.1概述
9.2步态矫形器(步行机)的发展与现状
9.3双关节单自由度步态矫形器(步行机)运动分析
9.3.1人体行走的特征参数和步态分析
9.3.2理想目标步态函数
9.3.3多杆步行机构选型和运动分析
9.4步行机构仿生优化设计
9.4.1优化设计数学模型
9.4.2优化计算和仿真结果分析
9.5步行机动力学分析
9.5.1动力学模型
9.5.2动力学方程
9.6步行机的系统组成和控制系统框图
9.6.1步行机的系统组成
9.6.2步行机控制系统
参考文献
第10章基于人体生物电信息的人机一体化智能系统
10.1概述
10.1.1生物电特征提取
10.1.2生物电模式分类
10.2表面肌电信号分析识别系统
10.2.1系统组成
10.2.2典型算法
10.3基于表面肌电信号的人手动作识别
10.3.1人手动作识别流程
10.3.2健康受试者动作识别
10.3.3截肢者“意念”动作识别
10.4基于表面肌电信号的路况识别
10.4.1肌电信号特征提取
10.4.2路况辨识方法
10.5基于脑电信号的脑机接口系统
10.5.1脑电信号与脑机接口
10.5.2稳态视觉诱发电位的特点和诱发方法
10.5.3基于SSVEP的脑机接口的构造及特点
10.6脑机接口在康复工程中的应用
10.6.1脑机接口控制的多自由度假肢
10.6.2SSVEP脑机接口的环境控制系统
10.6.3光标控制系统
10.6.4电器遥控系统
10.6.5电话拨号系统
参考文献
中英文名词对照
名词索引
附录A与本书有关的研究项目
附录B参加与本书有关科研项目工作的教师、博士后研究人员、
博士研究生、硕士研究生和访问学者名录
Contents
Contents
Contents
Chapter 1Introduction1
1.1Research and Development of Rehabilitation Engineering1
1.1.1Types of Disability of Human Body and Basic
Rehabilitation Means3
1.1.2Scientific Principle of Rehabilitation Engineering
Research4
1.1.3Development of Rehabilitation Engineering5
1.2Research and Application of BioMechanology14
1.2.1BioMechanology and Mechanology14
1.2.2BioMechanology and Biomechanics16
1.2.3Areas in BioMechanology Research18
1.3BioMechanology Research in Rehabilitation Engineering19
1.3.1BioMechanology Modeling of Human Motor
Function and Its Application20
1.3.2Synergic Analysis of Human Movements21
1.3.3Communication Principle and Method Between
Human and Mechanical System21
1.3.4Analysis and Design of Interface in Human
Mechanical System22
1.3.5Effects of Mechanical System to Biological Function
of Human Body in HumanMachine System22
1.3.6Design of HumanMachine System22
1.3.7Detecting and Evaluation of Motor Function of
Human Body23
1.4Outline of This Book23
References24
Chapter 2Description and Evaluation of Human Movements31
2.1Detection Method of the Locus of Human Movements
Based on Image Identification31
2.1.1Identification Technology of Marks on Human
Body32
2.1.2Method of 3Dimensional Reconstruction Based
on 2Dimensional Image39
2.2Detection Technology of Ground Reacting Forces42
2.2.1Detection Technology of Thenar Pressure
Distribution43
2.2.2Detection Technology of 3Dimensional
Resultant Force44
2.3Detecting and Processing Technology of Surface
Electromyography Signals48
2.3.1Analog Amplificatory Circuit49
2.3.2Digital Filtering Treatment50
2.3.3Analysis and feature detecting Methods of sEMG56
2.4Description and Evaluation of Upper Limbs Movement63
2.4.1Investigation on Synergic Analysis of
Upper
Limb Movements64
2.4.2Evaluation for Upper Limb Movements72
2.4.3Recovery Ability of Human Hand under the
Disturbance while Grasping Subject82
2.5Evaluation of Walking Ability of Human Body88
2.5.1Symmetry Index for Gait Pattern88
2.5.2Applications of the Symmetry Index of Gait
Pattern90
2.6Description and Evaluation of Balance Ability of Human
Body93
2.6.1Balance Ability Description by Using Locus and
evaluation Index Variety of Mass Center93
2.6.2Application Example of Balance Ability
Evaluation Method99
References102
Chapter 3Balance Recovery Strategies while External Disturbances
Encountered104
3.1Quantitative Evaluation of Dynamical Stability Based on
Energy Analyzing Method104
3.1.1Abundance Index of Stability for Forward Rotation105
3.1.2Abundance Index of Stability for Rearward
Rotation108
3.1.3Abundance Index of Stability under Different Initial
Conditions109
3.1.4Dynamic Stable Region110
3.1.5Influence of Some Factors on Dynamic Stability112
3.1.6Analysis of Stability During BiFoot Walking115
3.2BioMechanology Analysis of Balance Recovery while
External Disturbances Encountered During Static Stance121
3.2.1Quantitative Measurement of the Disturbance
Intensity121
3.2.2Modes of Balance Recovery Strategies Related to
Disturbance Intensity122
3.2.3Contributions of Each Joint to Balance Recovery125
3.2.4Minimal Step Length for Balance Recovery while
a Single Step Strategy Adopted140
3.3Analysis on Slip Potential During Normal Gait146
3.3.1Gait Parameters Related to Unexpected Slip146
3.3.2Difference of Slip Potential Between Normal
Persons and TransFemoral Prosthesis Users149
3.4Balance Recovery Strategies During Unexpected Slips158
3.4.1Experiment and Analyzing Method for Unexpected
Slip Potential158
3.4.2Balance Recovery Strategies Employed by Normal
Persons164
3.4.3Balance Recovery Strategies Employed by Unilateral
TransFemoral Prosthesis Users167
3.4.4Discussion on a TwoPhase Balance Strategy173
3.5Analysis of Joint Moments of Normal Person During
Slip and Fall175
3.5.1MultiRigid Body Model176
3.5.2Dynamic Equations177
3.5.3Joint Moments Calculation180
3.6Prosthesis Safety Considering Human Balance Recovery
Strategies188
3.6.1Reduction of Slip Potential Via Improving Gait189
3.6.2Improving React Ability Via Rehabilitation
Training190
3.6.3Considering AntiSlip and AntiFall in Prosthesis
Design191
3.6.4Warning Users When Slip Occurring192
References192
Chapter 4Description and Applieation of BioMechanistic Properties of
Human Neuromuscular and Musculoskeletal System195
4.1Fundament of Motion Physiology and Engineering
Descriptions of Neuromuscular System and Motor Control195
4.1.1Motor Control Strategy and Spinal Cord Reflex195
4.1.2Electromyography and Stimulate Evoked Response201
4.1.3BioMechanology Model of Muscle Contraction203
4.1.4BioMechanology Model of Articular Load207
4.1.5BioMechanology Model of Spinal Reflex209
4.2Measurement Methods of BioMechanistic Properties of
Human Limbs210
4.2.1Kinematic of Human Limbs211
4.2.2Muscle Force and Joint Torque216
4.2.3Measurement of Joint Dynamics223
4.3Modeling and Parameter Identification of Joint Dynamics226
4.3.1Control Modeling of Joint Movement226
4.3.2Experiment Design231
4.3.3Estimation of System Parameters232
4.3.4Identification of Reflex Properties of Neuromuscular
System237
4.4Application of Human Nonromascular and Muswloskeletal
system model240
4.4.1Comparison of Knee Joint Parameters of Different
Normal Subjects240
4.4.2Change of Neuromuscular Dynamics in Spastic Limbs245
4.4.3Evaluation of Spasticity Based on Normalized
Patellar Tendon Reflex Response248
References250
Chapter 5BioMechanology Analysis of Human Knee Joint
and Its Application255
5.1Development of Knee Joint Modeling256
5.2Modeling Method of 3Dimensional InVivo Knee Joint
Based on Medical Imaging257
5.2.1Medical Imaging Resource of Knee Joint and
Parameter Determination257
5.2.2Modeling of 3Dimensional InVivo Knee Joint260
5.2.3Data Importing and Finite Element Modeling of
3Dimensional Knee Joint265
5.3TibioFemoral Contact Analysis Under Different Loads267
5.3.1Mechanical Parameters of Materials and Boundary
Conditions267
5.3.2Finite Element Analysis Using Abaqus Software269
5.3.3TibioFemoral Contact Analysis Under Different
Loads270
5.4Effect of Meniscectomy on The TibioFemoral Contact278
5.4.1Effect of Meniscectomies on TibioFemoral
Contact279
5.4.2Effect of One Side Meniscectomy on TibioFemoral
Contact285
5.4.3Effect of Menisci Material and Menisci
Position on TibioFemoral Contact290
5.5Effect of Relative Position of Tibia and Femora on
TibioFemoral Contact294
5.5.1Effect of Relative Angular Position of Tibia and
Femora in Horizontal Plane295
5.5.2Effect of Relative Angular Position in Coronal
Plane Between Tibia and Femora295
5.5.3Joint Effect of Relative Angular Position in
Horizontal and Coronal Plane295
5.6Biomechanical Behavior Analysis of Ligaments298
5.6.1Restrictive Effect of Ligaments on Anterior
Translation of Tibia299
5.6.2Restrictive Function of Ligaments on Posterior
Translation of Tibia300
References304
Chapter 6BioMachanology Principle and Bionic Design of
UpperLimb Prosthetic System307
6.1Anatomical Structure and Movement Function of
Human Arm307
6.2Biomechanics of Musculoskeletal System of Upper Limb308
6.2.1Range of Motion308
6.2.2Movement Mechanism and Redundancy Problem310
6.3BioMechanology Model of Upper Limb Prosthesis312
6.4Structure and Functional Anthropomorphic Design of
Myoelectric Prosthetic Hand313
6.4.1Anthropomorphic Structure and Transmission
Calculation of Myoelectric Hand313
6.4.2MyoElectric Control of Prosthetic Hand316
6.5Intelligent Sensing System of Prosthetic Hand319
6.5.1ClosedLoop Force Sensing Feedback with the
Aid of Vision320
6.5.2ClosedLoop Tactile & Slip Feedback324
6.6Kinematic Analysis of MultiJointed Anthropomorphic
Finger Mechanism331
6.6.1Physiological Parameters and Movement
Expression of Human Finger333
6.6.2Kinematic Analysis and Trajectory Equations of
Finger Mechanism333
6.7Optimal Design of SixBar Linkage for Anthropomorphic
Finger Mechanism337
6.7.1Design Variables337
6.7.2Constraint Conditions for Optimal Design338
6.7.3Mathematic Model and Optimal Solution341
6.8Bionic Mechanism for Prosthetic Elbow Joint343
6.8.1Actuating Mechanism and Equivalent Model of
Human Elbow Joint343
6.8.2Kinematic Analysis of Prosthetic Elbow
Mechanism344
6.8.3Force Analysis of Elbow Mechanism345
6.9Optimal Design of Elbow Mechanism347
6.9.1Design Variables347
6.9.2Objective Function347
6.9.3Constraint Functions349
6.9.4Mathematic Model and Optimal Solution350
References351
Chapter 7BioMachanology Analysis of Lower Limb Movement and
Its Application353
7.1Introduction353
7.2BioMachanology Analysis of Lower Limb in Swing
Phase355
7.2.1Model and Dynamic Equations in Swing Phase355
7.2.2Application of Dynamic Equations358
7.3Gait Pattern and Joint Moments while Walking on
Different Terrain361
7.3.1Gait Pattern Under Different Terrain361
7.3.2Joint Moments Under Different Terrain366
7.3.3Differences of the Gait Pattern Between Normal
Persons and TransFemoral Prosthesis User369
7.4Effect of Metatarsophalangeal Joint Flexion on Gait Pattern370
7.4.1Experiment Scheme371
7.4.2Experimental Results373
7.4.3Causations of the Variation of Gait Pattern377
7.5Musculoskeletal Modeling of Lower Limb and Muscle
Force Calculation in Walking378
7.5.1Musculoskeletal Model and Dynamic Equations379
7.5.2Constitution and Parameters of Muscle Model380
7.5.3Passive Moment in Joins383
7.5.4Calculation of Muscle Forces in Swing Phase384
7.5.5Calculation of Muscle Forces in Stance Phase390
7.5.6Comparison Between Calculated Muscle
Forces and sEMG Signals392
7.6Functional Analysis of Prosthetic Knee with FourBar
Linkage394
7.6.1Stability Coordination Area in Stance Phase395
7.6.2Stability Coordination Function of Prosthetic
Knee with FourBar Linkage396
7.6.3Rising Capacity of Ankle Joint in Swing Phase398
7.6.4Calculation of Knee Control Moment399
7.7Functional Analysis of Prosthetic Knee with SixBar
Linkage403
7.7.1Constitution of Prosthetic Knee with SixBar
Linkage404
7.7.2Instant Inactive Joint in Sixbar Linkage and
Stability Design404
7.7.3Kinematical Design410
7.7.4Dynamic Analysis417
7.7.5Experimental Results421
7.8Moment Control Devices in Intelligent Prosthetic Knee424
7.8.1Pneumatic Control Device424
7.8.2ConeShaped Friction Device431
7.9Principle and Functional Analysis of Energy Storing
Prosthetic Foot432
7.9.1Determination of Functional Index of Energy
Released Over Stored by Gait Analysis433
7.9.2Investigation on Dynamic Function by Finite
Element Method435
7.9.3Influence of Mechanical Properties of
Material
and External Force Function on Functional Index437
References439
Chapter 8Biomechanical Analysis of Interface Between Prosthetic
Socket and Stump of transtibia prosthesis442
8.1Introduction442
8.2Methods for Estimating Interface Pressures444
8.2.1Experimental Measurement444
8.2.2Numerical Simulation445
8.3SocketStump Interface Model for Predicting
Biomechanical Properties450
8.3.1Finite Element Modeling450
8.3.2Determination of Kinemafical Gait Parameters and
Dynamic Inertial Loads Duning Walhing457
8.4Measurement of Interface Pressures460
8.5Results of Simulation and Experiment461
8.5.1Interface Pressures After Donning and During
Standing462
8.5.2Interface Pressures During Walking462
8.5.3Consideration of Inertial Loads and Variation
of Knee Motion465
8.6Influences of Several Factors on Interface Stresses469
8.6.1Road Conditions469
8.6.2Walking Pace472
8.6.3Prosthetic Alignment476
References485
Chapter 9Principle of Functional Orthotics and Bionic Design of
Powered Gait Orthosis487
9.1Introduction487
9.2Development and Application of Gait Orthoses488
9.3Kinematic Design of TwoJointed Gait Orthosis
(Walking Machine) with One Degree of Freedom492
9.3.1Characteristic Parameters of Walking Gait492
9.3.2Expected Objective Gait Function494
9.3.3Constitution and Kinematic Analysis of
MultiLinkage Walking Mechanism495
9.4BionicOptimum Design of the Walking Mechanism498
9.4.1Mathematic Model of Optimum Design498
9.4.2Optimization and Results501
9.5Dynamic Analysis of the Walhing Machine503
9.5.1Dynamical Model503
9.5.2Dynamical Equation503
9.6Mechanical and Control System of the Walhing Machine511
9.6.1Constitution of Mechanical System511
9.6.2Control System512
References513
Chapter 10BioElectrical Signal Based HumanMachine
Intelligent
System515
10.1Introduction515
10.1.1Extraction Method of BioElectrical Signal 515
10.1.2Pattern Classification Method of Bio
Electrical Signal516
10.2Analyzing and Identification System for sEMG519
10.2.1Constitution of System 519
10.2.2Typical Calculating Methods 525
10.3sEMG Based Identification of Hand Motion 528
10.3.1Flow Chart of Hand Motion Identification 528
10.3.2Motion Identification of Normal Subjects530
10.3.3Motivational Moving Identification of
Hand Amputee534
10.4sEMG Based Terrain Identification 540
10.4.1sEMG Signals While Walking on
Different Terrain541
10.4.2Terrain Identification Scheme543
10.5EEGBased BrainComputer Interface System545
10.5.1Electroencephalography and Brain
Computer Interface545
10.5.2SteadyState Visual Evoked Potential and
Stimulating Method547
10.5.3SSVEPBased BrainComputer Interface
System and Its Feature549
10.6Application of SSVEPBCI System in Rehabilitation
Engineering552
10.6.1BrainComputer Interface Controlled Multiple
Degree Upper Limb Prosthesis552
10.6.2Environmental Controller Based on SSVEPBCI552
10.6.3Cursor Controller554
10.6.4Appliance Remote554
10.6.5DialPhone System555
References556
Nomenclature Collation559
Index of Terms569
Appendix ABackground Research Projects580
Appendix BContributors to the Research Projects582