图书目录

第 1章无约束优化                                                 .1 

1.1最优性条件                                                  2 

1.1.1主要的最优性条件                                       .9 

1.2梯度方法的收敛性                                            16 

1.2.1下降方向和步长准则                                      16 

1.2.2收敛结果                                             .33 

1.3梯度方法的收敛速率                                          46 

1.3.1局部分析方法                                          47 

1.3.2条件数的作用                                          49 

1.3.3关于收敛速率的结论                                      57 

1.4牛顿方法及其变形                                            67 

1.5最小二乘问题                                               .78 

1.5.1高斯-牛顿方法                                         .82 

1.5.2增量梯度法.                                           .83 

1.5.3高斯-牛顿法的增量形式.                                   92 

1.6共轭方向法                                                 100 

1.7拟牛顿法                                                   114 

1.8非求导方法                                                 122 

1.8.1坐标下降法                                            123 

1.8.2直接搜索法                                            124 

1.9离散时间最优控制问题.                                        127 

1.10一些实用的指导准则                                        . 140 

1.11注释和参考资料                                             144

第 2章凸集优化                                                   147 

2.1约束优化问题                                              . 147 

2.1.1最优解的充要条件                                     . 148 

2.1.2最优解的存在性.                                        156 

2.2可行方向法和条件梯度法                                     . 163 

2.2.1下降方向和步长规则                                     164 

2.2.2条件梯度法                                            167 

2.3梯度投影法                                                 173 

2.3.1基于投影方法的可行方向和步长规则                       . 174 

2.3.2收敛性分析.                                          . 182 

2.4双矩阵投影方法                                            . 190 

2.5流型子优化方法                                            . 195 

2.6线性规划的仿射变换                                          202 

2.7坐标块下降方法.                                            . 208 

2.8注释和参考资料                                            . 213

第 3章拉格朗日乘子理论                                            215 

3.1等式约束优化问题的必要条件                                   216 

3.1.1惩罚法                                              . 219 

3.1.2消元法                                              . 221 

3.1.3拉格朗日函数                                          224 

3.2等式约束优化问题的充分条件和灵敏度分析                       . 230 

3.2.1增广的拉格朗日方法                                     231 

3.2.2可行方向法                                            234 

3.2.3灵敏度 .                                             . 235 

3.3不等式约束优化问题                                          239 

3.3.1 Karush-Kuhn-Tucker最优性条件                            241 

3.3.2转化为等式约束处理 .                                    243 

3.3.3二阶充分条件和灵敏度 .                                 . 245 

3.3.4充分性条件及拉格朗日最小化                              246 

3.3.5 Fritz John最优性条件 .                                   247 

3.3.6深化和精练 .                                           259 

3.4线性约束和对偶性.                                          . 279 

3.4.1凸目标函数和线性约束                                   279 

3.4.2对偶理论:针对简单等式约束的优化问题                    . 281 

3.5注释和参考资料                                            . 287 

第 4章拉格朗日乘子算法                                            289 

4.1障碍函数法和内点法                                          289 

4.1.1线性规划与对数障碍方法 .                               . 292 

4.2惩罚法和增广的拉格朗日方法                                   303 

4.2.1二次罚函数方法                                       . 305 

4.2.2乘子方法 ——主要思想                                 . 311 

4.2.3乘子方法的收敛性分析.                                   318 

4.2.4对偶性和二阶乘子方法.                                   321 

4.2.5指数乘子方法.                                          323 

4.3精确惩罚 ——序贯二次规划.                                  . 329 

4.3.1不可微精确罚函数                                     . 330 

4.3.2可微精确罚函数                                       . 343 

4.4拉格朗日方法和原始-对偶内点法.                               . 348 

4.4.1一阶方法                                            . 348 

4.4.2等式约束问题的类牛顿方法                              . 352 

4.4.3全局收敛性                                            359 

4.4.4原始-对偶内点法                                      . 362 

4.4.5不同方法的比较                                       . 369 

4.5注释和参考资料                                            . 370

第 5章对偶性与凸规划                                             373 

5.1对偶问题                                                   374 

5.1.1几何乘子                                            . 375 

5.1.2弱对偶定理                                            378 

5.1.3原问题和对偶问题最优解的性质                            383 

5.1.4原问题不可行或最优值无界的情形                         . 384 

5.1.5对等式约束的处理                                     . 384 

5.1.6可分问题及其几何结构                                   386 

5.1.7有关对偶性的其他问题                                   389 

5.2凸目标函数 ——线性约束问题 .                                . 394 

5.3凸目标函数 ——凸约束问题                                    399 

5.4共轭函数及 Fenchel对偶.                                       406 

5.4.1单值规划的对偶性                                     . 410 

5.4.2网络优化                                            . 413 

5.4.3博弈和最小化最大值定理                                . 415 

5.4.4原函数                                              . 417 

5.4.5从对偶的角度看罚函数方法                              . 419 

5.4.6最近邻和熵最小化算法                                   424 

5.5离散优化及其对偶                                            437 

5.5.1离散优化问题的举例                                     438 

5.5.2分枝定界                                            . 443 

5.5.3拉格朗日松弛                                          450 

5.6注释和参考资料                                            . 459

第 6章对偶方法                                                   461 

6.1对偶微分及次梯度                                            462 

6.2可微对偶问题的对偶上升方法                                   467 

6.2.1二次规划的坐标上升法                                   467 

6.2.2严格凸的可分问题                                     . 469 

6.2.3划分和对偶严格凹性                                     470 

6.3不可微优化方法                                            . 474 

6.3.1次梯度方法                                            474 

6.3.2近似次梯度法和增量次梯度法                              478 

6.3.3割平面方法                                            481 

6.3.4上升法和近似上升法                                     486 

6.4分解方法                                                   497 

6.4.1耦合约束的拉格朗日松弛                                . 497 

6.4.2基于约束右侧常数分解的方法                              500 

6.5注释和参考资料                                            . 502

附录 A数学背景                                                   505 

A.1向量和矩阵                                               . 506 

A.2范数、数列、极限和连续性                                     508 

A.3方阵和特征值                                               514 

A.4对称和正定矩阵                                             516 

A.5导数                                                      520 

A.6压缩映射                                                 . 524

附录 B凸分析                                                     527 

B.1凸集和凸函数                                               527 

B.2分离超平面                                                 543 

B.3锥和多面体的凸性                                          . 546 

B.4极点                                                      553 

B.5可微性问题                                                 557 

附录 C线性搜索方法                                               569 

C.1三次插值法                                                 569 

C.2二次插值法                                                 570 

C.3黄金分割法                                                 571

附录 D牛顿法的运用                                              . 575 

D.1 Cholesky分解                                               575 

D.2改进牛顿法的应用                                          . 577

参考文献                                                          580