Chapter 1
Introduction

Abstract When working with those XML data, there are three different functions
that need to be performed: adding information to the repository, searching and
retrieving information from the repository, and updating information from the
repository. A good XML database must handle those functions well. In this chapter,
we will introduce solutions for XML database, including flat files, relational
database, object relational database, and other storage management system.

Keywords Relational database ¢ Object relational database

1.1 XML Data Model

An XML document always starts with a prolog markup. The minimal prolog
contains a declaration that identifies the document as an XML document. XML
identifies data using tags, which are identifiers enclosed in angle brackets. Collec-
tively, the tags are known as “markup.” The most commonly used markup in XML
data is element. Element identifies the content it surrounds. For example, Fig. 1.1
shows a simple example XML document. This document starts with a prolog
markup that identifies the document as an XML document that conforms to version
1.0 of the XML specification and uses the 8-bit Unicode character encoding scheme
(Line 1). The root element (Line 2—14) of the document follows the declaration,
which is named as bib element. Generally, each XML document has a single root
element. Next, there is an element book (Line 3—13) which describes the information
(including author, title, and chapter) of a book. In Line 9, the element text contains
both a subelement keyword and character data XML stands for

J. Lu, An Introduction to XML Query Processing and Keyword Search, 1
DOI 10.1007/978-3-642-34555-5_1,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2013

2 1 Introduction

1. <xml version = "1.0" encoding = “UTF-8"?>
2. <bib>

3. <book>

4. <author>Suciu</author>

S. <author>Chen</author>

6. <title> Advanced Database System </title>
7. <chapter><title>XML</title>

8. <section><title>XML specification</title>
9. <text><keyword>markup</keyword> XML stands for...
10. </text>
11. </section>
12. </chapter>
13. </book>
14. </bib>

Fig. 1.1 Example XML document

bib
book
author author title chapter
“Suciu” “Chen” “Advafinced...” title sectign
| AN
“XML” title text

“XML” keyword “XML stands for...”

“markup”

Fig. 1.2 Example XML tree model

Although XML documents can have rather complex internal structures, they can
generally be modeled as trees,! where tree nodes represent document elements,
attributes, and character data and edges represent the element—subelement (or
parent—child) relationship. We call such a tree representation of an XML document
as an XML tree. Figure 1.2 shows a tree that models the XML document in Fig. 1.1.

XML has grown from a markup language for special purpose documents to
a standard for the interchange of heterogenous data over the Web, a common
language for distributed computation, and a universal data format to provide users
with different views of data. All of these increase the volume of data encoded
in XML, consequently increasing the need for database management support for
XML documents. An essential concern is how to store and query potentially huge
amounts of XML data efficiently [AJP+02, AQM+97, JAC+02, LLHC05, MW99,
ZND+01].

'For the purpose of this book, when we model XML document as trees, we consider IDREF
attributes as not reference links but subelements.

1.2 Emergence of XML Database 3
1.2 Emergence of XML Database

XML has penetrated virtually all areas of Internet-related application programming
and become the frequently used data exchange framework in the application areas
[Abi97, CFI4-00, DFS99]. When working with those XML data, there are (loosely
speaking) three different functions that need to be performed: adding information
to the repository, searching and retrieving information from the repository, and
updating information from the repository. A good XML database must handle those
functions well. Many solutions for XML database have been proposed, including flat
files, relational database [FTS00, Mal99, SSK+01, STZ+99, TVB+02, ZND+01],
object relational database [ML02, SYU99], and other storage management system,
such as Natix [FMO1], TIMBER [JJ06, JLS+04, PJOS, YJRO3], and Lore [MAG97].
We briefly discuss these solutions as follows.

1.2.1 Flat File Storage

The simplest type of storage is flat file storage, that is, the main entity is a
complete document; internal structure does not play a role. These models may
be implemented either on the top of real file systems, such as the file systems
available on UNIX, or inside databases where documents are stored as binary large
objects (BLOBs). The operation store can be supported very efficiently at low
cost, while other operations, such as search, which require access to the internal
structure of documents may become prohibitively expensive. Flat file storage is not
most appropriate when search is frequent, and the level of granularity required by
this storage is the entire document, not the element or character data within the
document.

1.2.2 Relational and Object Relational Storage

XML data can be stored in existing relational database. They can benefit from
already existing relation database features such as indexing, transaction, and query
optimizers. However, due to XML data that is a semistructured data, converting
this data model into relation data is necessary. There are mainly two converting
methods: generic [FK99] and schema-driven [STZ+-99]. Generic method does not
make use of schemas but instead defines a generic target schema that captures any
XML document.

Schema-driven depends on a given XML schema and defines a set of rules
for mapping it to a relational schema. Since the inherent significant difference
between rational data model and nested structures of semistructured data, both
converting methods need a lot of expensive join operations for query processing.

4 1 Introduction

Mo and Ling [MLO02] proposed to use object relational database to store and
query XML data. Their method is based on ORA-SS (Object-Relationship-Attribute
model for Semistructured Data) data model [DWLLO1], which not only reflects
the nested structure of semistructured data but also distinguishes between object
classes and relationship types and between attributes of objects classes and attributes
of relationship types. Compared to the strategies that convert XML to relational
database, their methods reduce the redundancy in storage and the costly join
operations.

1.2.3 Native Storage of XML Data

Native XML engines are systems that are specially designed for managing XML
data [MLLAO3]. Compared to the relational database storage of XML data, native
XML database does not need the expensive operations to convert XML data to fit
in the relational table. The storage and query processing techniques adopted by
native XML database are usually more efficient than that based on flat file and
relational and object relational storage. In the following, we introduce three native
XML storage approaches.

The first approach is to model XML documents using the Document Object
Model (DOM) [Abi97]. Internally, each node in a DOM tree has four pointers and
two sibling pointers. The filiation pointers include the first child, the last child, the
parent, and the root pointers. The sibling pointers point to the previous and the next
sibling nodes. The nodes in a DOM tree are serialized into disk pages according
to depth-first order (filiation clustering) or breadth-first order (sibling clustering).
Lore [MAG97, MW99] and XBase [LWY +02] are two instances of such a storage
approach.

The second approach is TIMBER project [JA02], at the University of Michigan,
aiming to develop a genuine native XML database engine, designed from scratch.
It uses TAX, a bulk algebra for manipulating sets of trees. For the implementation
of its Storage Manager module, it uses Shore, a back-end storage system capable
for disk storage management, indexing support, buffering, and concurrency control.
With TIMBER, it is possible to create indexes on the document’s attribute contents
or on the element contents. The indexes on attributes are allowed for both text and
numeric content. In addition, another kind of index support is the tag index, that,
given the name of an element, it returns all the elements of the same name.

Finally, Natix [FMO01] is proposed by Kanne and Moerkotte at the University of
Mannheim, Germany. It is an efficient and native repository designed from scratch
tailored to the requirement of storing and processing XML data. There are three
features in Natix system: (1) subtrees of the original XML document are stored
together in a single (physical) record; (2) the inner structure of subtrees is retained;
and (3) to satisfy special application requirements, the clustering requirements of
subtrees are specifiable through a split matrix. Unlike other XML DBMS which

1.4 XML Keyword Search 5

provide fully developed functionalities to manage data, Natix is only a repository.
It is built from scratch and has no query language, no much work done on indexing
and query processing, and no use of DTDs or XML schema.

1.3 XML Query Language and Processing

To retrieve such tree-structured data, a few XML query languages have been
proposed in the literature. Examples are Lorel [AQM+97], XML-QL [DFF98],
XML-GL [CCD+99], Quilt [CRF00], XPath [BBC04], and XQuery [BCFO03].
Of all the existing XML query languages, XQuery is being standardized as the
major XML query language. XQuery is derived from the Quilt query language,
which in turn borrowed features from several other languages such as XPath. The
main building block of XQuery consists of path expressions, which addresses
part of XML documents for retrieval, both by value search and structure search
in their elements. For example, the following path expression /bib/book[author=
‘Suciu’ J/title asks for the title of the book written by “Suciu.” In Fig. 1.1, this query
returns the title Advanced Database System.

1.4 XML Keyword Search

The extreme success of web search engines makes keyword Search the most
popular search model for ordinary users. As XML is becoming a standard in data
representation, it is desirable to support keyword search in XML database. It is a
user-friendly way to query XML databases since it allows users to pose queries
without the knowledge of complex query languages and the database schema.
Most previous efforts in this area focus on keyword proximity search in XML
based on either tree data model or graph (or digraph) data model. Tree data model
for XML is generally simple and efficient for keyword proximity search. However,
it cannot capture connections such as ID references in XML databases. In contrast,
techniques based on graph (or digraph) can capture those connections, but the
algorithms based on the graph model are very expensive in many cases. In this
book, we will show interconnected object trees model for keyword search to achieve
the efficiency of tree model and meanwhile to capture the connections such as ID
references in XML by fully exploiting the property and schema information of
XML databases. In particular, we will propose ICA (Interested Common Ancestor)
semantics to find all predefined interested objects that contain all query keywords.
We will also introduce novel IRA (Interested Related Ancestors) semantics to
capture the conceptual connections between interested objects and include more
objects that only contain some query keywords. Then a novel ranking metric,
RelevanceRank, is studied to dynamically assign higher ranks to objects that are

6 1 Introduction

more relevant to given keyword query according to the conceptual connections
in IRAs. We will design and analyze efficient algorithms for keyword search
based on our efficient, which outperforms most existing systems in terms of result
quality.

1.5 Book Outline

The content of this book can be divided into five parts.

Part I is an introduction, which contains Chap. 1. Chapter 1 gives a brief
introduction of XML, including the emergence of XML database, XML data model,
and searching and querying XML data.

Part II discusses query processing, which focuses on tree pattern queries. Part IT
contains Chaps. 2, 3, 4, and 5. In Chap. 2, in order to facilitate query process
over XML data that conforms to an ordered tree-structure data model efficiently,
a number of labeling schemes for XML data have been proposed.

The emergence of the Web has increased interests in XML data. Without a
structural summary and efficient index, query processing can be quite inefficient
due to an exhaustive traversal on XML data. To overcome the inefficiency, several
path indexes have been proposed in Chap. 3.

Answering twig queries efficiently is important in XML tree pattern processing.
In order to perform efficient processing, Chap. 4 introduces two kinds of join
algorithms, both of which play significant roles. Also, solutions about how to speed
up query processing and how to reduce the intermediate results to save spaces are
present in Chap. 4.

Previous algorithms focus on XML tree pattern queries with only P-C and A-D
relationships. Little work has been done on extended XML tree pattern queries
which contain wildcards, negation function, and order restriction, all of which are
frequently used in XML query languages. Chapter 5 will show a set of holistic
algorithms to efficiently process the extended XML tree patterns.

Part III discusses XML keyword search, which contains Chaps. 6, 7, and 8.
Chapter 6 presents a survey on the existing XML keyword search semantics
algorithms and ranking strategy. In XML keyword search, user queries usually
contain irrelevant or mismatched terms, typos, etc., which may easily lead to empty
or meaningless results. Chapter 7 introduces the problem of content-aware XML
keyword query refinement and offers a novel content-aware XML keyword query
refinement framework. Chapter 8 is an introduction to LCRA and LotusX, which
provides a concise and graphical interface where users can explicitly specify their
search concerns.

Finally, Part IV contains Chap. 9, which summarizes this book and presents
several future works.

References

References

[AbI97]

[AJP+02]

[AQM+97]
[BBCO04]
[BCFO3]

[CCD+99]

[CFI+00]

[CRFO00]

[DFF98]

[DFS99]

[DWLLO1]

[FK99]
[FMO1]
[FTS00]
[JAO2]

[JAC+02]

[JJ06]

[JLS+04]

[LLHCO5]

Abiteboul, S.: Querying semi-structured data. In: Proceedings of Database Theory,
6th International Conference, Delphi, Greece, pp. 1-18 (1997)

Al-khalifa, S., Jagadish, H.V., Patel, .M., Wu, Y., Koudas, N., Srivastava, D.: Struc-
tural joins: a primitive for efficient XML query pattern matching. In: Proceedings
of the 20th International Conference on Data Engineering, San Jose, pp. 141-152
(2002)

Abiteboul, S., Quass, D., Mchugh, J., Widom, J., Wiener, J.L.: The Lorel query
language for semistructured data. Int. J. Digit. Libr. 1(1), 68-88 (1997)

Berglund, A., Boag, S., Chamberlin, D.: XML path language (XPath) 2.0, W3C
Working Draft 23 July 2004

Boag, S., Chamberlin, D., Fernandez, M.F.: XQuery 1.0: an XML query language.
W3C Working Draft 22 Aug 2003

Ceri, S., Comai, S., Damiani, E., Fraternali, P. Paraboschi, S., Tanca, L.: XML-GL: a
graphical language for querying and restructuring XML documents. In: Proceedings
of the 8th International World Wide Web Conference, Toronto, May 1999

Carey, M.J., Florescu, D., Ives, Z.G., Lu, Y., Shanmugasundaram, J., Shekita, E.J.,
Subramanian, S.N.: XPERANTO: publishing object-relational data as XML. In:
Proceedings of the 3rd International Workshop on the Web and Databases, Dallas,
TX, USA (Informal proceedings), pp. 105-110 (2000)

Chamberlin, D.D., Robie, J., Florescu, D.: Quilt: an XML query language for
heterogeneous data sources. In: Proceedings of the Third International Workshop
on the Web and Databases, Dallas, Texas, USA, pp. 53-62 (2000)

Deutsch, A., Fernandez, M.E,, Florescu, D.: A query language for XML, World Wide
Web Consortium (1998)

Deutsch, A., Fernandez, M.E,, Suciu, D.: Storing semistructured data with STORED.
In: Proceedings ACM SIGMOD International Conference on Management of Data,
Philadelphia, pp. 431-442 (1999)

Dobbie, G., Wu, X., Ling, T.W., Lee, M.: ORA-SS: object-relationship-attribute
model for semistructured data, Technical Report TR 21/00 National University of
Singapore (2001)

Florescu, D., Kossmann, D.: Storing and querying XML data using an RDMBS.
IEEE Data Eng. Bull. 22(3), 27-34 (1999)

Fiebig, T., Moerkotte, G.: Algebraic XML construction in NATIX. In: Proceedings
of WISE, Kyoto, Japan, pp. 212-221 (2001)

Fernandez, M.F., Tan, W.C., Suciu, D.: SilkRoute: trading between relations and
XML. Comput. Netw. 33(1-6), 723-745 (2000)

Jagadish, H.V., Al-khalifa, S.: TIMBER: a native XML database, Technical report,
University of Michigan (2002)

Jagadish, H.V., Al-khalifa, S., Chapman, A., Lakshmanan, L.V.S., Nierman, A.,
Paparizos, S., Patel, J.M., Srivastava, D., Wiwatwattana, N., Wu, Y., Yu, C.
TIMBER: a native XML database. VLDB J. 11(4), 274-291 (2002)

Jayapandian, M., Jagadish, H.V.: Automating the design and construction of query
forms. In: Proceedings of the 22nd International Conference on Data Engineering,
Atlanta (2006)

Jagadish, H.V., Lakshmanan, L.V.S., Scannapieco, M., Srivastava, D., Wiwatwattana,
N.: Colorful XML: one hierarchy isn’t enough. In: Proceedings of the ACM
SIGMOD International Conference on Management of Data, Paris, pp. 71-82 (2004)
Li, H,, Lee, M.L., Hsu, W., Cong, G.: An estimation system for XPath expressions.
In: Proceedings of the 22nd International Conference on Data Engineering, Tokyo,
Japan, pp. 54-65 (2005)

[LWY+02]

[MAG97]
[Mal99]

[ML02]

[MLLAO3]

[MW99]

[PJO5]

[SSK+01]

[STZ+99]

[SYU99]

[TVB+02]

[YJRO3]

[ZND+01]

1 Introduction

Lu, H., Wang, G., Yu, G., Bao, Y., Lv, J., Yu, Y.: XBase: making your gigabyte disk
files queriable. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, Madison, pp. 630-630 (2002)

Mchugh, J., Abiteboul, S., Goldman, R., Quass, D., Widom, J.: Lore: a database
management system for semistructured data. SIGMOD Rec. 26(3), 54-66 (1997)
Malaika, S.: Using XML in relational database applications. In: Proceedings of the
15th International Conference on Data Engineering, Sydney, pp. 167-167 (1999)
Mo, Y., Ling, T.W.: Storing and maintaining semistructured data efficiently in an
object-relational database. In: Proceedings of the 3rd International Conference on
Web Information Systems Engineering, Singapore, pp. 247-256 (2002)

Meng, X., Luo, D., Lee, M., An, J.: Orientstore: a schema based native XML storage
system. In: Proceedings of 29th International Conference on Very Large Data Base,
Berlin, pp. 1057-1060 (2003)

Mchugh, J., Widom, J.: Query optimization for XML. In: Proceeding of the 25th
International Conference on Very Large Data Bases, Edinburgh, pp. 315-326 (1999)
Pararizos, S., Jagadish, H.V.: Pattern tree algebras: sets or sequences. In: Proceedings
of 31th International Conference on Very Large Data Bases, Trondheim, Norway,
pp. 349-360 (2005)

Shanmugasundaram, J., Shekita, E.J., Kiernan, J., Krishnamurthy, R., Viglas, S.,
Naughton, J.F.,, Tatarinov, I.: A general techniques for querying XML documents
using a relational database system. SIGMOD Rec. 30(3), 20-26 (2001)
Shanmugasundaram, J., Tufte, K., Zhang, C., He, G., Dewitt, D.J., Naughton, J.F.:
Relational database for querying XML documents: limitation and opportunities. In:
Proceedings of 25th International Conference on Very Large Data Bases, Edinburgh,
pp. 302-314 (1999)

Shimura, T., Yoshikawa, M., Uemura, S.: Storage and retrieval of XML documents
using object-relational databases. In: Database and Expert Systems Applications,
10th International Conference, Florence, pp. 206-217 (1999)

Tatarinov, 1., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang.
C.: Storing and querying ordered XML using a relational database system. In:
Proceedings of the ACM SIGMOD International Conference on Management of
Data, Madison, pp. 204-215 (2002)

Yu, C., Jagadish, H.V., Radev, D.R.: Querying XML using structures and keywords
in TIMBER. In: Proceeding of SIGIR, Toronto, pp. 463—463 (2003)

Zhang, C., Naughton, J.F., Dewitt, D.J., Luo, Q., Lohman, G.M.: On supporting
containment queries in relational database management systems. In: Proceedings
of the ACM SIGMOD International Conference on Management of Data, Santa
Barbara, pp. 425-436 (2001)

Chapter 2
XML Labeling Scheme

Abstract With the rapid development of the Internet, XML has become the widely
popular standard of representing and exchanging data. Documents conforming
to the XML standard can be viewed as trees. Elements in XML data can be
labeled according to the structure of the document to facilitate query processing. To
facilitate query process over XML data that conforms to an ordered tree-structured
data model efficiently, this chapter shows a number of labeling schemes for XML
data. We classify labeling schemes into two types: static labeling schemes and
dynamic labeling scheme.

Keywords Static labeling scheme ¢ Dynamic labeling scheme

2.1 Introducing XML Labeling Scheme

With the rapid development of the Internet, XML has become the widely popular
standard of representing and exchanging data. Documents obeying the XML stan-
dard can be viewed as trees. Element in XML data can be labeled according to the
structure of the document to facilitate query processing. Query language like XPath
uses path expressions to traverse XML data. The traditional and most beneficial
technique for increasing query performance is the creation of effective indexing.
A well-constructed index will allow a query to bypass the need of scanning the entire
document for results. Normally, a labeling scheme assigns identifiers to elements
such that the hierarchical orders of the elements can be reestablished based on
their identifiers. Since hierarchical orders are used extensively in processing XML
queries, the reduction of the computing workload for the hierarchy reestablishment
is desirable.

To facilitate query process over XML data that conforms to an ordered tree-
structured data model efficiently, a number of labeling schemes for XML data have
been proposed. We classify labeling scheme into two types: static labeling schemes
and dynamic labeling scheme.

J. Lu, An Introduction to XML Query Processing and Keyword Search, 9
DOI 10.1007/978-3-642-34555-5_2,
© Tsinghua University Press, Beijing and Springer-Verlag Berlin Heidelberg 2013

10 2 XML Labeling Scheme

When XML data are static, the labeling schemes, such as containment scheme
(or called region encoding labeling scheme) [BKS02] and prefix scheme (or called
Dewey ID labeling scheme) [CKMO02, OOP+04, TVB+02], can determine the
ancestor—descendant (A-D), parent—child (P-C), etc., relationships efficiently in
XML query processing. Some variants have appeared for different purposes. For
example, extended Dewey labeling scheme [LLCCO5] is developed from Dewey
ID labeling scheme [TVB4-02]; the unique feature of this scheme is that from the
label of an element alone, one can derive the name of all elements in the path from
the root to this element. Twig pattern matching also can benefit from it, because
TJFast only needs to access labels of leaf nodes to answer queries and significantly
reducing I/O cost.

When XML data become dynamic, to efficiently update the labels of labeling
scheme, a lot of dynamic XML labeling schemes have been designed for needs, such
as region-based dynamic labeling scheme, prefix-based dynamic labeling scheme,
and prime labeling scheme. However, most of the techniques have high update
cost; they cannot completely avoid relabeling in XML updates. Therefore, we
will introduce a compact dynamic binary string (CDBS) encoding [LLHO8] and
a compact dynamic quaternary string (CDQS) encoding [LLHO08] which can be
applied broadly to different labeling schemes to efficiently process order-sensitive
updates.

2.2 Region Encoding Scheme

Elements in XML data can be labeled according to the structure of the document
to facilitate query processing. The region encoding scheme uses textual positions
of start and end tags. It can determine the ancestor—descendant (A-D), parent—child
(P-C), etc., relationships efficiently in XML query processing if XML data are static.

In the region encoding scheme (or called containment scheme), every node is
assigned three values: start, end, and level. start and end can be generated by
counting node numbers from beginning of the document until the start and the end
of the current node. level is the depth of the node in the document.

For any two nodes u and v:

1. [ancestor—descendant]: If « is an ancestor of v if and only if w.start < v.start and
u.end < v.end. In other words, the interval of node v is contained in the interval
of node u.

2. [parent—child]: If « is the parent of v if and only if w.start < v.start and u.end <
viend, u.level = v.level-1.

3. [sibling]: Node u is a sibling of node v if and only if the parent of node « is also
a parent of node v.

4. [preceding—following]: Node « is a preceding (following) node of node v if and
only if u.start <(>) v.start.

