
由第 2 章可知，随机变量是对随机现象结果的记录．对一个样本点 ω 只用一个实数

去描述往往是不够的．很多随机现象往往涉及多个随机变量，对随机现象的多个侧面进

行描述，要把这些随机变量当作一个整体来看待，就形成了多元随机变量．

3.1 多元随机变量及其联合分布

例 3.1 打靶时，用 (X,Y ) 表示/记录弹着点，其中 X 记录该点的横坐标，Y 记

录该点的纵坐标．由于射击的随机性，X,Y 都各是一元随机变量．对弹着点的研究，仅

研究 X 或仅研究 Y 都是片面的，应该把 X 和 Y 作为一个整体来考虑，讨论它们整体

变化的概率特性，进一步可以讨论 X 与 Y 之间的关系．在有些随机现象中，甚至要同

时考虑两个以上的随机变量．

直观来看，设 X1 = X1(ω), X2 = X2(ω), · · · , Xn = Xn(ω) 是一个随机现象中的 n

个随机变量，则它们的整体，(X1(ω), X2(ω), · · · , Xn(ω))
T，称为 n 维/元随机向量（n

维/元随机变量），有时也简称为随机变量．更严谨的定义如下．

定义 3.1（多元随机变量） 设 (Ω,F , P ) 是一个随机现象的概率空间，从样本空

间 Ω 到 Rn 的函数 X(ω) : Ω → Rn，称为 n 维随机变量（n 维随机向量）À，X(ω)
def
==

(X1(ω), X2(ω), · · · , Xn(ω))
T．今后常省略符号 ω，把X(ω)记为X = (X1, X2, · · · , Xn)

T，

默认是列向量．另外，只要标识清楚，也可以把随机向量记成行向量，X(ω)
def
== (X1(ω),

X2(ω), · · · , Xn(ω))．

例 3.2 从某大学随机抽取一个同学 ω，其性别记为

X1(ω) =

0, ω是男生,

1, ω是女生,

身高记为 X2(ω)，体重记为 X3(ω)，肺活量记为 X4(ω)，则 X1(ω), X2(ω), X3(ω), X4(ω)

是对 ω（同学）的不同侧面的描述，应视为一个整体，这个整体构成一个 4 元随机变量

(X1, X2, X3, X4)．

注意，多维随机变量 (X1(ω), X2(ω), · · · , Xn(ω))
T 的关键是定义在同一样本空间上，

各分量 Xi(ω)（i = 1, · · · , n）依共同的自变量 ω 而变，各分量一般说来有某种联系，因

À 当然，为了 X 是数学上严格定义的 n 维随机变量，必须对函数 X(ω) 有所假定．类似一维随机变量，假定对任

何 x ∈ Rn，集合 {ω : X(ω) ⩽ x} 属于 F．
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而需要把它们作为一个整体（向量）来进行研究．从几何图像来看，二维随机向量可以

看成是平面上的 “随机点”，三维随机向量可以看成是空间（三维空间）中的 “随机点”．
当 n ⩾ 4 时，n 维随机向量可以想象为 n 维空间中的 “随机点”．
在引入多维随机变量后，可以用多维随机变量来表示随机事件．比如，我们在例 2.10

中，已经使用了一个三维随机变量 (XA, XB, XC) 来表示邮局中三个顾客 A,B,C 的办事
时长，用 {min(XA, XB) +XC > max(XA, XB)} 表示 C 是最后一个办完事情．一般地，
设有 n 维随机变量 X ∈ Rn，考虑数集 B ⊂ Rn，则 X 取值于 B 表示随机事件

{X ∈ B} = {ω|X(ω) ∈ B}．

这与我们在一元随机变量中的做法是完全类似的．从认识一元随机变量上升到认识多元

随机变量，是概率论学习的一个重要台阶．迈这个台阶，很关键的一点就是向量思维．有

了向量观点，很多概念从一元到多元是一个很自然的推广，读者要多加体会．

与一元随机变量中的结论类似，人们一般关心的多元随机变量 X 取值所表达的事

件，均可以通过多元随机变量 X 取值于基本博雷尔集所表达的事件经集合运算（有限

或可列个交、并运算）来表示．类比实轴（一维实数空间）上基本博雷尔集的定义 1.12，
n 维实数空间的基本博雷尔集如下定义：对任意 x

def
== (x1, x2, · · · xn)

T ∈ Rn，

{c def
== (c1, c2, · · · cn)T|c1 ∈ (−∞, x1], c2 ∈ (−∞, x2], · · · , cn ∈ (−∞, xn)}

称为以 x 为端点的（n 维）基本博雷尔集，即各维分别小于或等于 x1, x2, · · · , xn 的 n

维实数向量构成的集合．n = 2 的一个例子见图 3.1．如果将在 n 维实数空间的大小比

较关系，“x1 ⩽ c1, x2 ⩽ c2, · · · , xn ⩽ cn” 简写为 “x ⩽ c”，则以 x 为端点的（n 维）基

本博雷尔集可简写为

{c|c ⩽ x, c ∈ Rn} def
== Bx．

这显然是（一维）基本博雷尔集的自然推广．

定义 3.2（联合分布函数） 考虑 n 元随机变量 X
def
== (X1, X2, · · · , Xn)

T 落在以

x
def
== (x1, x2, · · · , xn)

T 为端点的基本博雷尔集的概率，让 x ∈ Rn 变动起来得到一个 n

元函数，称为 X 的联合（累积）分布函数（joint CDF, JCDF），

FX1X2···Xn
(x1, x2, · · · , xn)

def
== P (X1 ⩽ x1, X2 ⩽ x2, · · · , Xn ⩽ xn),∀x1, x2, · · · , xn ∈ R

或简写为FX(x)
def
== P (X ⩽ x),

记为 X ∼ FX(x)．这里用下标表示是 X 的分布函数，有时可省略下标 X，记为 F (x)，

指代函数本身，即为 X 的分布函数．

注 1 随机向量 X 取值于基本博雷尔集 Bx 是一个随机事件，

{X ∈ Bx} = {X ⩽ x} = {X1 ⩽ x1, X2 ⩽ x2, · · · , Xn ⩽ xn}
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表示 n 个事件 {X1 ⩽ x1}, {X2 ⩽ x2}, · · · , {Xn ⩽ xn} 同时发生（交）．
注 2 由以上定义可知，与一维情形完全类似，随机向量 X 取值于基本博雷尔集

Bx 的概率 P (X ⩽ x) 随博雷尔集的端点（x）变动而形成的函数，称为分布函数．

注 3 简单起见，本章举例多为二维随机变量，二维以上的情况可类似进行．在二

维随机变量 (X,Y ) 场合，联合分布函数

F (x, y) = P (X ⩽ x, Y ⩽ y)

表示事件 {X ⩽ x} 与 {Y ⩽ y} 同时发生（交）的概率．如果将二维随机变量 (X,Y ) 看

成是平面上的随机点的坐标，那么联合分布函数 F (x, y) 在 (x, y) 处的函数值就是随机

点 (X,Y ) 落在以 (x, y) 为端点的无穷直角区域（参见图 3.1）的概率．

图 3.1 一个二维基本博雷尔集的示意图

定理 3.1 任一二维联合分布函数 F (x, y) 必具有以下 4 点性质：
(1) 单调性 F (x, y) 分别对 x 或 y 是单调非减的，即当 x1 < x2 时，有 F (x1, y) ⩽

F (x2, y)，当 y1 < y2 时，有 F (x, y1) ⩽ F (x, y2)．

(2) 有界性 对任意的 x 和 y，有 0 ⩽ F (x, y) ⩽ 1，且

F (−∞, y) = lim
x→−∞

F (x, y) = 0,

F (x,−∞) = lim
y→−∞

F (x, y) = 0,

F (+∞,+∞) = lim
x,y→+∞

F (x, y) = 1.

(3) 右连续性 对每个变量都是右连续的，即

F (x+ 0, y) = F (x, y), F (x, y + 0) = F (x, y).

(4) 非负性 对任意的 a < b，c < d 有

P (a < X ⩽ b, c < Y ⩽ d)

= F (b, d)− F (a, d)− F (b, c) + F (a, c) ⩾ 0.

证明 (1) 因为当 x1 < x2 时，有 {X ⩽ x1} ⊂ {X ⩽ x2}，所以对于任意给定的
y 有

{X ⩽ x1, Y ⩽ y} ⊂ {X ⩽ x2, Y ⩽ y},
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由此可得

F (x1, y) = P (X ⩽ x1, Y ⩽ y) ⩽ P (X ⩽ x2, Y ⩽ y) = F (x2, y),

即 F (x, y) 关于 x 是单调非减的．同理可证 F (x, y) 关于 y 是单调非减的．

(2) 由概率的性质可知 0 ⩽ F (x, y) ⩽ 1．又因为对任意的正整数 n 有

lim
x→−∞

{X ⩽ x} = lim
n→∞

n⋂
m=1

{X ⩽ −m} = ∅,

lim
x→+∞

{X ⩽ x} = lim
n→∞

n⋃
m=1

{X ⩽ m} = Ω,

对 {Y ⩽ y} 也类似可得，再由概率的连续性，就可得

F (−∞, y) = F (x,−∞) = 0, F (+∞,+∞) = 1.

(3) 固定 y，仿一维分布函数右连续的证明，就可得知 F (x, y) 关于 x 是右连续的．

同样固定 x，可证得 F (x, y) 关于 y 是右连续的．

(4) 只需证

P (a < X ⩽ b, c < Y ⩽ d) = F (b, d)− F (a, d)− F (b, c) + F (a, c).

为此记
A = {X ⩽ a}, B = {X ⩽ b}, C = {Y ⩽ c}, D = {Y ⩽ d}.

考虑到

{a < X ⩽ b} = B −A = B ∩A, {c < Y ⩽ d} = D − C = D ∩ C,

且 A ⊂ B,C ⊂ D, 由此可得

0 ⩽ P (a < X ⩽ b, c < Y ⩽ d)

= P (B ∩A ∩D ∩ C)

= P (BD − (A ∪ C))

= P (BD)− P (ABD ∪BCD)

= P (BD)− P (AD ∪BC)

= P (BD)− P (AD)− P (BC) + P (ABCD)

= P (BD)− P (AD)− P (BC) + P (AC)

= F (b, d)− F (a, d)− F (b, c) + F (a, c)． ■

还可证明，具有上述 4 条性质的二元函数 F (x, y) 一定是某个二维随机变量的分布

函数．

任一二维分布函数 F (x, y) 必具有上述 4 条性质，其中性质 (4) 是二维场合特有的，
也是合理的．但性质 (4) 不能由前三条性质推出，必须单独列出，因为存在这样的二元
函数，满足以上性质 (1)(2)(3)，但它不满足性质 (4)．
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怎么研究 n 维随机向量呢？在本节我们先介绍离散型随机向量、连续型随机向量，

然后在 3.5.4节讨论混合型随机向量．有的地方为简单起见，常以二维随机向量为例，读
者可类比将二维情形的结论推广到 n 维情形．

3.1.1 离散型多元随机变量

定义 3.3（离散型多元随机变量） 若 n 维随机变量 X
def
== (X1, X2, · · · , Xn)

T ∈ Rn

的取值为有限或可列个（注意，每个值是一个 n 维实数向量），则称为 n 维/元离散随机
变量；可能取值分别记为 x1,x2, · · · ∈ Rn，称一列数 P (X = xk)

def
== fX(xk) 为 X 的概

率分布列或简称为分布列（PMF），记为 X ∼ fX(xk)，也统称为概率分布．这里用下标

表示是 X 的分布函数，有时可省略下标 X，记为 f(xk)，指代分布列本身．

注 读者不难发现，离散型多元随机变量及其分布的定义，与前面离散型一元随机

变量及其分布的定义完全类似，只是换成向量表达．为强调是多元情形，X 的概率分布

fX(·) 也叫作 (X1, X2, · · · , Xn) 的联合分布列（Joint PMF，JPMF）．

定理 3.2（联合分布列的基本性质） （1）非负性，f(xk) ⩾ 0, k = 1, 2, · · ·；
（2）正则性，

∑
k

f(xk) = 1．

如果二维随机变量 (X,Y )只取有限个或可列个数对 (xi, yj)，则 (X,Y )为二维离散

随机变量，其联合分布列 fXY (xi, yj), i, j = 1, 2, · · ·，可以用一张二维表格来表示，或者
更形象地，用二维平面上的柱状图来表示，参见图 3.2．

图 3.2 一个二维离散随机变量（例 3.3）的联合分布列（JPMF）

    
例 3.3 从 1,2,3,4 中任取一个数记为 X，再从 1, 2, · · · , X 中任取一数记为 Y，求

(X,Y ) 的联合分布列．

解 不难看出 (X,Y ) 构成一个二维随机变量，求出联合分布列如图 3.2 所示，用
表格或者柱状图来表示．我们还画出了 (X,Y ) 的联合分布函数，见图 3.3，供读者形象
理解．
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图 3.3 一个二维离散随机变量（例 3.3）的联合分布函数（JCDF）

例3.4（多项分布） 多项分布是重要的多维离散分布，它是二项分布的推广，其定义

如下：进行 n次独立重复试验，如果每次试验有 r 个互不相容的结果：A1, A2, · · · , Ar 之

一发生，每次试验中 Ai发生的概率为 pi = P (Ai)，i = 1, 2, · · · , r，且 p1+p2+· · ·+pr = 1．

记 Xi 为 n 次独立重复试验中 Ai 出现的次数，i = 1, 2, · · · , r，则 (X1, X2, · · · , Xr) 取

值 (n1, n2, · · · , nr) 的概率，即 A1 出现 n1 次，A2 出现 n2 次，· · · · · · , Ar 出现 nr 次的

概率为

P (X1 = n1, X2 = n2, · · · , Xr = nr) =
n!

n1!n2! · · ·nr!
pn1
1 pn2

2 · · · pnr
r ,

其中 n = n1 + n2 + · · ·+ nr. 这个概率是多项式 (p1 + p2 + · · ·+ pr)
n 展开式中的一项，

故其和为 1．

这个联合分布列称为 r 项分布，又称多项分布，记为 M(n, p1, p2, · · · , pr)．当 r = 2

时，即为二项分布．

注意, 一个 r 项分布也可用 r − 1 维随机向量的分布来表示. 以三项分布为例, 设
X = (X1, X2) 取值于集合 X = {(i, j); i 和 j 都是自然数且 i+ j ⩽ n},X 的如下概率分
布表示了一个三项分布 M(n, p1, p2, 1− p1 − p2)

P (X1 = i,X2 = j) =
n!

i!j!(n− i− j)!
pi1p

j
2(1− p1 − p2)

n−i−j ,

其中 n ⩾ 1, 0 < p1, p2 < 1, p1 + p2 < 1, (i, j) ∈ X .
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例 3.5（三项分布的例子） 今有一大批量粉笔，其中 60% 是白的，25% 是黄的，
15% 是红的．先从中随机地、依次取出 6 支．问：这 6 支中恰有 3 支白、1 支黄、2 支
红的概率是多少？

解 设 X = “6支中白粉笔的支数”，Y = “6支中黄粉笔的支数”，Z = “6支中红粉
笔的支数”，则 (X,Y, Z)构成一个三维离散随机变量，不难看出其服从三项分布．则事件

“6 支中恰有 3 支白、1 支黄、2 支红” 就是事件 {X = 3, Y = 1, Z = 2}，即{(X,Y, Z) =

(3, 1, 2)}．该事件的概率为

P ((X,Y, Z) = (3, 1, 2)) =
6!

3!1!2!
(0.6)3(0.25)(0.15)2 = 0.0729.

更详细的推导如下．用 “白白黄白红红” 表示第一支是白的，第二支是白的，第三支是黄
的，第四支是白的，第五支是红的，第六支是红的．由于是大批量，我们可以认为各次

抽取是独立的且抽取到黄、红、白的概率不变，有

P (“白白黄白红红”) = P (白)P (白)P (黄)P (白)P (红)P (红) = (0.6)2(0.25)(0.6)(0.15)2.

于是
P (“6 支中恰有 3 支白、1 支黄、2 支红”) = m · (0.6)3(0.25)(0.15)2,

其中 m是由三白、一黄、二红组成的六维向量的个数．据排列组合知识得 m =
6!

3!1!2!
=

60．因此所求得概率为

60 · (0.6)3(0.25)(0.15)2 = 0.0729. ■

3.1.2 连续型多元随机向量

定义 3.4（连续型多元随机向量） 如果存在二元非负函数 fXY (x, y)，使得二维随

机向量 (X,Y ) 的分布函数可表示为

FXY (x, y) =

∫ x

−∞

∫ y

−∞
fXY (u, v)dudv,

则称 (X,Y ) 为二维连续随机向量，称 fXY (·, ·) 为 (X,Y ) 的联合概率密度函数（joint
PDF，JPDF），简称密度函数或分布密度，记为 (X,Y ) ∼ fXY (x, y)，也统称为概率分

布．这里用下标表示是 XY 的分布函数，有时可省略下标 XY，记为 f(x, y)，指代联合

概率密度函数本身．

推广到 n 维随机向量 X ∈ Rn，若存在 n 元非负函数 fX(x),x ∈ Rn，使得 X 的

分布函数可表示为
FX(x) =

∫
u⩽x

fX(u)du,

则称 X 为 n 维/元连续随机向量，记为 X ∼ fX(x)．上式中积分表示在以 x 为端点的

基本博雷尔集 Bx 上的 n 重积分．

定理 3.3（联合概率密度函数的基本性质） （1）非负性，fXY (x, y) ⩾ 0；

（2）正则性，
∫ +∞

−∞

∫ +∞

−∞
fXY (u, v)dudv = 1．
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注 1 不难看出，与一维连续变量类似，对二维连续随机向量 (X,Y )，我们有：

• 其分布函数 FXY (x, y) 是 (x, y) 的连续函数；

• 在 F (x, y) 偏导数存在的点上，fXY (x, y) =
∂2

∂x∂y
FXY (x, y)；

• 连续随机向量在单点上的取值概率等于 0，即 P (X = x, Y = y) = 0,∀(x, y) ∈ R2；

• (X,Y ) 取值位于 (u, v) 附近一个微元区域的概率 P (u < X ⩽ u + du, v < Y ⩽
v + dv) ≈ fXY (u, v)dudv．
注 2 对连续型的随机向量 (X,Y )，可以证明对于平面上相当任意À的点集 B ⊂ R2

均成立
P ((X,Y ) ∈ B) =

∫∫
(x,y)∈B

fXY (x, y)dxdy． (3.1)

更一般地，对 n 维随机向量 X ∈ Rn 以及 n 维实数空间中相当任意的点集 B ⊂ Rn 均

成立
P (X ∈ B) =

∫
x∈B

fX(x)dx． (3.2)

式 (3.1), 式 (3.2) 是本章的基本公式之一．它的证明要用到较深的数学知识，超出
了本书的范围，证明从略．读者要理解这个公式的意义和用法．

从式 (3.1) 知道，随机向量 (X,Y ) 落入平面上任一区域 B 的概率等于联合密度

fXY (x, y) 在 B 上的二重积分．这就把概率的计算化为二重积分的计算．由此可知，事

件 {(X,Y ) ∈ B} 的概率等于以曲面 z = fXY (x, y) 为顶，以平面区域 B 为底的曲顶柱

体的体积．更一般地，从式 (3.1) 知道，n 维随机向量 X 落入 n 维实数空间中任一区域

B 的概率等于概率密度函数 fX(x) 在 B 上的 n 重积分．

以二维为例，在具体使用式 (3.1) 时，要注意积分范围是联合密度 fXY (x, y) 的非零

区域（支集）与 B 的交集部分，然后设法化成累次积分，最后计算出结果．

例 3.6 设两个灯管的寿命为二元随机向量 (X,Y ), 其联合概率密度函数为

f(x, y) =

2e−xe−2y, 0 < x < +∞, 0 < y < +∞,

0, 其他．

求 P (X < Y )．

解 P (X < Y ) =

∫∫
x<y

f(x, y)dxdy =

∫
0<x<+∞

∫
x<y<+∞

2e−xe−2ydxdy

=

∫ +∞

0

e−x

(∫ +∞

x

2e−2ydy
)

dx =

∫ +∞

0

e−xe−2xdx =
1

3
．

定义 3.5（二维正态分布） 若二元随机向量 (X,Y ) 的联合概率密度函数为

f(x, y) =
1

2πσ1σ2

√
1− ρ2

·

À “相当任意” 的集合 B 是指：B 为平面上的博雷尔集．
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exp
{
− 1

2(1− ρ2)

[
(x− µ1)

2

σ2
1

− 2ρ
(x− µ1)(y − µ2)

σ1σ2

+
(y − µ2)

2

σ2
2

]}
, (3.3)

−∞ < x, y < +∞，则称 (X,Y ) 服从二维正态分布，称 (X,Y ) 为（二维）正态变量，记

为 (X,Y ) ∼ N(µ1, µ2, σ
2
1 , σ

2
2 , ρ)，其中 −∞ < µ1, µ2 < +∞, σ1, σ2 > 0, |ρ| ⩽ 1 为参数．

形如式 (3.3) 的概率分布称为二维正态分布，其概率密度函数和分布函数如图 3.4 所示．
式 (3.3) 所示正态分布的支集为二维平面 R2．式 (3.3) 常简写为 N(x|µ1, µ2, σ

2
1 , σ

2
2 , ρ)．

同一维情形，正态分布可称为高斯分布，正态变量称为高斯变量．

以后将指出：µ1, µ2 分别是 X 与 Y 的均值，σ2
1 , σ

2
2 分别是 X 与 Y 的方差，ρ 是

X 与 Y 的相关系数．

  

   
图 3.4 二维正态分布的概率密度函数与分布函数

  
定义 3.6（n 维正态分布） 若 n 维随机向量 (X1, X2, · · · , Xn)

def
== X ∈ Rn 的联合

概率密度函数为

fX(x) =
1

(2π)
n
2 |Σ| 12

e− 1
2 (x−µ)TΣ−1(x−µ),x ∈ Rn, (3.4)

则称 X 服从 n 维正态分布，称 X 为（n 维）正态变量，记为 X ∼ N(µ,Σ)，其中

µ ∈ Rn 是 n 维实向量，Σ 为 n × n 正定矩阵，是 n 元正态分布的表征参数．式 (3.4)
所示正态分布的支集为 n 维实数空间 Rn．式 (3.4) 常简写为 N(x|µ,Σ)．

以后将指出：µ 是 X 的均值向量，Σ 是 X 的协方差矩阵．

不难看出，二维正态分布（式 (3.3)）是 n 元正态分布（式 (3.4)）在 n = 2 的特例．

由二维正态分布的参数 µ1, µ2, σ
2
1 , σ

2
2 , ρ 可定义

µ =

(
µ1

µ2

)
,Σ =

(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)
．

那么式 (3.4) 变为
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fXY (x, y) =
1

2π

∣∣∣∣∣ σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

∣∣∣∣∣
1
2

·

exp

−1

2

(
x− µ1

y − µ2

)T(
σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)−1(
x− µ1

y − µ2

) ,

稍加整理可知，这与二维正态分布（式 (3.3)）代表相同的概率密度函数．

例 3.7（蒲丰投针问题） 平面上画有间隔为 d（d > 0）的等距平行线，向平面任

意投掷一枚长为 l（l < d）的针，求针与任一平行线相交的概率．

解 以 X 表示针的中点与最近一条平行线的距离，以 Θ 表示针与此直线间的交角，

见图 3.5（a），易知
0 ⩽ X ⩽ d

2
, 0 ⩽ Θ ⩽ π．

由这两式可以确定 x-θ 平面上的一个矩形 Ω 是随机变量 (X,Θ)的支集，其面积为 SΩ =

d

2
π．针与平行线相交（记为事件 A），可以等价表示为

X ⩽ l

2
sinΘ.

由这个不等式表示的区域是图 3.5（b）中的阴影部分，记为区域 B．

由于针是向平面任意投掷的，可以认为 (X,Θ) 在矩形区域（支集）内服从二维均匀

分布，密度为 1/(dπ/2)，由此得

P (A) = P

(
X ⩽ l

2
sinΘ

)
=

∫∫
x⩽ l

2 sin θ

f(x, θ)dxdθ

=

∫ π
0

∫ l
2 sin θ

0

1

d

2
π

dxdθ =
1

d

2
π

∫ π
0

l

2
sin θdθ =

2l

dπ
． (3.5)

 
图 3.5 蒲丰投针问题

    


