µÚ3ÕµäÐ͵ÄÏ¡Êè½á¹¹¼°Ñ¹Ëõ¸ÐÖªËã·¨ 3.1ÒýÑÔ µÚ2ÕÂϵͳ½éÉÜÁ˽ṹ»¯Ñ¹Ëõ¸ÐÖª»ù±¾ÀíÂÛ£¬°üÀ¨½á¹¹»¯Ï¡Êè±íʾ¡¢½á¹¹»¯¹Û²â¾ØÕóÉè¼ÆºÍ½á¹¹»¯Öع¹¡£Í¨¹ý¶ÔµÚ2ÕµÄѧϰ£¬ÎÒÃÇÁ˽⵽½á¹¹»¯Ñ¹Ëõ¸Ð֪ͨ¹ýÒýÈ븴ÔӵĽṹ»¯Ï¡ÊèÄ£ÐÍ£¬´Ó¶øÄܹ»´ó·ù¶ÈÌá¸ßѹËõ¸ÐÖªÀíÂÛÔÚʵ¼ÊÖеÄÓ¦ÓÃÄÜÁ¦¡£ÔÚÐźŴ¦ÀíÁìÓò£¬¸ù¾ÝÐźÅÄ£ÐÍÏ¡Êè½á¹¹µÄ²»Í¬£¬½á¹¹»¯Ñ¹Ëõ¸ÐÖª¿ÉÒÔ·ÖΪ¿éÏ¡ÊèѹËõ¸ÐÖª¡¢ÁªºÏÏ¡ÊèѹËõ¸ÐÖª¡¢¸ß˹ÁªºÏÏ¡ÊèÕÅÁ¿Ñ¹Ëõ¸ÐÖª¡¢ÈºÏ¡ÊèѹËõ¸ÐÖªµÈ¡£±¾ÕÂÖØµã½éÉÜ¿éÏ¡ÊèѹËõ¸ÐÖª¡¢ÁªºÏÏ¡ÊèѹËõ¸ÐÖª¡¢¸ß˹ÁªºÏÏ¡ÊèÕÅÁ¿Ñ¹Ëõ¸ÐÖªÈýÀàµäÐͽṹ»¯Ñ¹Ëõ¸ÐÖª·½·¨¡£¾ßÌåÀ´Ëµ£¬Õë¶ÔÕ⼸ÖÖÌØÊâµÄ½á¹¹»¯Ï¡ÊèÐźÅÄ£ÐÍ£¬×ÅÖØ½éÉÜÐźÅÖØ½¨·½·¨¡£ ÓÉÓڽṹ»¯Ï¡ÊèÐźÅÊÇÏ¡ÊèÐźŵÄÌØÊâÐÎʽ£¬Òò´ËÆäÖØ¹¹ÎÊÌâÍêÈ«¿ÉÒÔÓþ­µäµÄѹËõ¸ÐÖªÖØ¹¹Ë㷨ȥ´¦Àí¡£È»¶ø£¬Èç¹ûºöÂÔÁËÏ¡ÊèÐźŵÄÄÚ²¿½á¹¹¶øÒ»Î¶µØÊ¹Óþ­µäµÄѹËõ¸ÐÖªÖØ¹¹ËãÀ´Öع¹£¬½«»á¼«´óµØÓ°ÏìËã·¨ÔËÐÐЧÂʺÍÖØ¹¹¾«¶È¡£ÕýÊÇÔÚÕâÒ»±³¾°Ï£¬¿éÏ¡Êè¡¢ÁªºÏÏ¡ÊèµÈһϵÁнṹ»¯Ñ¹Ëõ¸ÐÖª·½·¨±»Ìá³ö¡£¿éÏ¡ÊèѹËõ¸ÐÖªÖØ¹¹Ëã·¨Õë¶Ô¿éÏ¡ÊèÐźŷÇÁãÔªËØ³É¿é³öÏÖµÄÌØµã£¬Õ¹ÏÖ³öÏà±È´«Í³Ñ¹Ëõ¸ÐÖªÖØ¹¹Ëã·¨µÄÓÅÊÆ¡£¿éÏ¡ÊèѹËõ¸ÐÖª·½·¨µÄ³£¼ûÐÎʽÓпé»ìºÏ·¶ÊýÓÅ»¯Ëã·¨¡¢¿éÕý½»Æ¥Åä×·×ÙËã·¨¡¢¿éÆ¥Åä×·×ÙËã·¨¡¢¿éÏ¡Êè×Ó¿Õ¼äѧϰËã·¨ºÍ¿éÏ¡Ê豴Ҷ˹Ëã·¨¡£ÁªºÏÏ¡ÊèѹËõ¸ÐÖª·½·¨³£³£ÀûÓÃÐŵÀµÄÏ¡ÊèÌØÐÔºÍʱ¼äÏà¹ØÐÔ½øÐÐÐźÅÖØ¹¹£¬¿É½øÒ»²½¸ÄÉÆÖØ¹¹ÐÔÄÜ£¬¶Ôʱ±äÐŵÀ¾ßÓиüºÃµÄÊÊÓ¦ÐÔ¡£ÁªºÏÏ¡ÊèѹËõ¸ÐÖª·½·¨°üÀ¨ÈýÖÖÁªºÏÏ¡ÊèÄ£ÐÍϵÄÖØ¹¹Ëã·¨ÒÔ¼°¸ß˹ÁªºÏÏ¡ÊèÕÅÁ¿Ñ¹Ëõ¸ÐÖª¡£ 3.2¿éÏ¡ÊèѹËõ¸ÐÖª ±¾½ÚÖØµã½éÉÜ¿éÏ¡ÊèѹËõ¸ÐÖªÖØ¹¹·½·¨£¬°üÀ¨¿é»ìºÏL2/L1·¶ÊýÓÅ»¯Ëã·¨¡¢Ï¡ÊèÕý½»Æ¥Åä×·×ÙËã·¨¡¢¿éÏ¡ÊèÆ¥Åä×·×Ù¡¢¿éÏ¡Êè×Ó¿Õ¼äѧϰ¼°»ùÓڷDzÎÊý±´Ò¶Ë¹µÄ¿éÏ¡ÊèÖØ¹¹¡£ 3.2.1¿éÏ¡ÊèÐźÅÄ£ÐÍ Ëæ×ÅѹËõ¸ÐÖªÀíÂÛÑо¿µÄÉîÈ룬Ðí¶àÑо¿Õß¿ªÊ¼Æ«ÏòÒ»ÖÖÌØÊ⵫Ҳ³£¼ûµÄÐźšª¡ª¿éÏ¡ÊèÐźš£Ôںܶàʵ¼ÊÓ¦Óó¡¾°ÖУ¬ÐźŵķÇÁãÔªËØ³£³Ê´Ø³öÏÖ£¬·ûºÏÕâÖÖ½á¹¹ÌØÐÔµÄÐźųÆÎª¿éÏ¡ÊèÐźţ¬¼ûͼ2.10¡£¿éÏ¡ÊèÐźÅ×îÔç³öÏÖÔÚͳ¼ÆÑ§ÖУ¬µ±Ï¡ÊèϵÊý³ÊÏÖ¿é½á¹¹Ê±£¬Ô¬Ã÷½ÌÊÚÔÚLassoËã·¨µÄ»ù´¡ÉÏÒýÈë¿é½á¹¹Ìص㣬²¢½«ÆäÍÆ¹ãΪGroup Lasso¡£Ëæºó£¬¿éÏ¡ÊèÄ£ÐÍÓÖ±»ÓÃÓÚͬ²½Ï¡Êè±Æ½üÒÔ¼°±´Ò¶Ë¹¶à²ãÄ£Ð͵ĶàÈÎÎñѹËõ¸ÐÖªºÍѧϰÎÊÌâ£Û1£Ý¡£ÔÚʵ¼ÊÓ¦ÓÃÖУ¬¿éÏ¡ÊèÄ£ÐÍ´æÔÚÐÎʽ¹ã·º£¬ÈçDNA΢ÕóÁУÛ2£Ý¡¢¶à´øÐźţÛ3£Ý¡¢¶àÖØ²âÁ¿ÎÊÌâ£Û4£Ý¼°ÐÅºÅµÄÆµÆ×¸ÐÖªµÈÁìÓò¡£ ¿éÏ¡ÊèÐźŵÄѹËõ¸Ð֪ģÐÍÈçÏ£º y=Dx+n(3.1) ÆäÖУ¬y¡ÊRLΪ²âÁ¿ÐźÅ; D¡ÊRL¡ÁNΪ¹Û²â¾ØÕó; x¡ÊRNÊdz¤¶ÈΪNµÄ¿éÏ¡ÊèÐźÅÏòÁ¿; nÊÇÔëÉùÏòÁ¿¡£ ÎÒÃÇÒª½â¾öµÄÎÊÌâÊÇÓÉy¡ÊRLºÍ¾ØÕóD¡ÊRL¡ÁN»Ö¸´¿éÏ¡ÊèÐźÅÏòÁ¿x¡£¸ù¾Ý¿éÏ¡ÊèµÄÐÔÖÊ£¬xÓÉÊý¸ö¼¶ÁªµÄ×Ó¿é×é³É£¬¼Ù¶¨Ã¿¸ö¿éµÄ³¤¶ÈÏàµÈ¾ùΪd£¬½«ÐźÅx»®·ÖΪM¸ö×ӿ飬Áîxl,l¡Ê1,2,¡­,M±íʾÐźÅxµÄµÚl¸ö×ӿ飬¼´ x=£Ûx1¡­xdxT£Û1£Ýxd+1¡­x2dxT£Û2£Ý¡­xN-d-1¡­xNxT£ÛM£Ý£Ý(3.2) ÓÉÉÏʽ¿ÉÖª£¬ÐźÅx×ܳ¤¶ÈN=Md¡£µ±d=1ʱ£¬¿éÏ¡ÊèÐźÅÍË»¯Îª´«Í³µÄÏ¡ÊèÐźš£ÀàËÆÓÚ´«Í³CSÖжÔÐźÅÏ¡Êè¶ÈµÄ¶¨Ò壬¿éÏ¡Êè¶ÈÖ¸µÄÊÇ¿éÏ¡ÊèÐźÅÖзÇÁã¿éµÄ¸öÊý£¬Í¨³£ÓÃL2,0·¶Êý±íʾÐźÅxµÄ¿éÏ¡Êè¶È£¬ÃèÊöÈçÏ£º ¡¬x¡¬2,0=¡ÆMl=1I¡¬x£Ûl£Ý¡¬2(3.3) I(¡¬x£Ûl£Ý¡¬2)=1,¡¬x£Ûl£Ý¡¬2>0 0,ÆäËû(3.4) ÆäÖÐI(¡¤)±íʾ¼ÆÊýº¯Êý£¬¶¨ÒåÈçʽ(3.4)¡£ ¼ÙÉèÐźÅx¡ÊRNΪKª²¿éÏ¡ÊèÐźţ¬Ôò¡¬x¡¬2,0=K¡£ÖµµÃ×¢ÒâµÄÊÇ£¬Ò»¸öKª²¿éÏ¡ÊèÐźŵÄʵ¼ÊÏ¡Êè¶ÈΪKd£¬ÆäÖÐdΪһ¸ö¿éµÄ³¤¶È¡£ÀàËÆÊ½(3.2)ÖÐÐźÅÏòÁ¿xµÄ¶¨Ò壬¿ÉÒÔ°Ñ¹Û²â¾ØÕóD±íʾΪM¸ö¼¶ÁªµÄÁпéD£Ûl£Ý¡ÊRL¡Ád£¬l=1,2,¡­,M£¬ÇÒ¹Û²â¾ØÕóDÐèÒªÂú×ãBlockª²RIPÌõ¼þ£º D=£Ûd1¡­ddD£Û1£Ýdd+1¡­d2dD£Û2£Ý¡­¡­dN-d+1¡­dND£ÛM£Ý£Ý(3.5) ÀûÓÃʽ(3.5)£¬Ê½(3.1)¿É¸ÄдΪ y=Dx+n =£Ûd1¡­ddD£Û1£Ý¡­¡­dN-d+1¡­dND£ÛM£Ý£Ý¡¤£Ûx1¡­xdxT£Û1£Ý¡­xN-d+1¡­xNxT£ÛM£Ý£ÝT+n(3.6) ¿éÏ¡ÊèÐźŵÄѹËõ²âÁ¿¹ý³ÌÈçͼ3.1Ëùʾ£Û5£Ý¡£ ͼ3.1¿éÏ¡ÊèÐźŵÄѹËõ²âÁ¿Ê¾Òâͼ ¿éÏ¡ÊèÖØ½¨Ëã·¨Òª´¦ÀíµÄÎÊÌâ¾ÍÊÇÔÚ²âÁ¿ÖµyºÍ×ÖµäDÒÑÖªµÄÇé¿öÏ£¬Çó½âÐźŵÄ×îÏ¡Êè±íʾÏòÁ¿x^£¬¼´ x^= arg minx¡ÊRN¡Á1¡¬y-Dx¡¬22 s.t. ¡¬x¡¬1¡ÜK(3.7) 3.2.2¿é»ìºÏ·¶ÊýÓÅ»¯Ëã·¨ ÔÚ´«Í³CSÖØ½¨Ëã·¨»ù´¡ÉÏ£¬ÒÔEldarµÈÈËΪ´ú±íµÄÑо¿ÕßÃdzä·ÖÀûÓÃÉÏÊö¿éÏ¡Êè½á¹¹£¬Ìá³öÁË»ùÓÚ¿éÏ¡ÊèÄ£Ð͵ÄÖØ½¨Ëã·¨£¬½øÒ»²½½µµÍѹËõ¸ÐÖªµÄÊý¾Ý²ÉÑùƵÂÊ£¬Ìá¸ßÊý¾ÝÖØ¹¹Ð§ÂÊ¡£ÏÂÃæÎÒÃÇ·Ö±ð½éÉÜ͹ÓÅ»¯ÀàµÄLp·¶Êý×îС»¯¡¢Ì°À·ÀàµÄMPËã·¨¡¢OMPËã·¨¼°×Ó¿Õ¼äѧϰ(SSL)Ëã·¨ÔÚ¿éÏ¡ÊèÄ£ÐÍϵÄÀ©Õ¹Ëã·¨¡£ ÀûÓÿéÏ¡ÊèÐÅºÅµÄ½á¹¹ÌØÐÔ£¬EldarµÈÈ˳ɹ¦ÀûÓÃ͹ÓÅ»¯µÄ˼·Ìá³öÁËÒ»ÖÖ»ùÓÚ»ìºÏ·¶ÊýµÄÖØ½¨Ëã·¨£¬³ÆÎªL2/L1¿é»ìºÏ·¶ÊýÓÅ»¯Öؽ¨Ëã·¨¡£¸ÃËã·¨µÄºËÐÄ˼·ÊÇÕÒµ½·ûºÏÔ¼ÊøÌõ¼þµÄʹ¸÷¿éx£Ûl£Ý(l=1,2,¡­,M)ÄÜÁ¿Ö®ºÍ×îСµÄÐźÅÏòÁ¿x¡£ÎªÐðÊö·½±ã£¬ÎÒÃÇÊ×Ïȸø³öË÷Òý¼¯¦¤={1,2,¡­,M}ÉÏLp/Lq¿é»ìºÏ·¶ÊýµÄ¶¨Òå ¡¬x¡¬p,q=¡ÆMl=1¡¬xl¡¬qp1/q(3.8) ÄÇôL2/L1¿é»ìºÏ·¶Êý¶ÔӦΪ ¡¬x¡¬2,1=¡ÆMl=1¡¬xl¡¬12(3.9) ÔòÄ¿±ê½â¾öµÄÎÊÌâ(²»¿¼ÂÇÔëÉùÓ°Ïì)¿É±í´ïΪ min¡¬x¡¬2,1 s.t. y=Dx(3.10) ÔÚµÚ2ÕµÄѹËõ¸ÐÖª»ù±¾ÀíÂÛ½éÉÜÖÐÌáµ½£¬ÒªÏë´ïµ½Ðźŵľ«È·Öؽ¨£¬¹Û²â¾ØÕó±ØÐëÂú×ãRIPÐÔÖÊ¡£ÔÚ¿éÏ¡ÊèÐźÅÖУ¬²âÁ¿¾ØÕóͬÑù±ØÐëÂú×ãÏàÓ¦µÄ¿éÊÜÏ޵ȾàÐÔ(¿éRIP)¡£¸ù¾Ý¸ÃÐÔÖÊ£¬Èô´æÔÚÒ»¸ö³£Êý¦Äk¦¤£¬Ê¹µÃÿһ¸öKª²¿éÏ¡ÊèÐźÅÏòÁ¿x¡ÊRN¾ùÂú×㣺 1-¦ÄK|¦¤¡Ü¡¬Dx¡¬22¡¬x¡¬22¡Ü1+¦ÄK|¦¤(3.11) Ôò³Æ¾ØÕóDÂú×ã¿éRIPÐÔÖÊ¡£ EldarµÈÈËÖ¤Ã÷£¬Èç¹û¾ØÕóDÓÐ×㹻СµÄ¿éÊÜÏ޵ȾೣÁ¿£¬Ôò»ìºÏ·¶Êý·½·¨Äܹ»±£Ö¤ÈκοéÏ¡ÊèÐźŵÃÒÔÖØ¹¹£¬²»ÂÛÆä·ÇÁã¿éµÄλÖá£ËûÃÇ»¹Ö¤Ã÷ÁËÒ»Ð©Ëæ»ú¾ØÕóÒÔ¼«¸ß¸ÅÂÊÂú×ã¿éRIPÐÔÖÊ£¬ÇÒ×ãÒԸ߹ýÂú×ã±ê×¼RIPµÄ¸ÅÂÊ¡£Êµ¼ÊÉÏ£¬¿éRIPÐÔÖʱȱê×¼RIPÐÔÖʵÄÒªÇóµÍºÜ¶à£¬¼´Âú×ã±ê×¼RIPÐÔÖʵľØÕóÒ»¶¨Âú×ã¿éRIPÐÔÖÊ£¬µ«·´Ö®²»È»¡£ÓÉÉÏÊöÃèÊö¿ÉÖª£¬Õë¶Ô¿éÏ¡ÊèÐźŵĻìºÏ·¶Êý×îÓÅ»¯Ëã·¨ÐèÒªÖªµÀ¿éÏ¡ÊèÐźſ黮·ÖµÄ¾ßÌåÐÅÏ¢¡£ 3.2.3¿éÕý½»Æ¥Åä×·×ÙËã·¨ »ùÓṴ́À·ÀàµÄOMPËã·¨£¬EldarµÈÈËÔÚ¿éÏ¡ÊèÀíÂÛ¿ò¼ÜÏÂÓÖÌá³öÁËBOMPËã·¨¡£Ó봫ͳµÄÆ¥ÅäÀàËã·¨²»Í¬£¬BOMPËã·¨ÔÚÍ걸×ÖµäÖÐÑ¡ÔñÓë²Ð²îr×îÏà¹ØÆ¥ÅäÔ­×ÓµÄ×¼Ôò±äΪ ¦Ëk= arg maxi=1,2£¬¡­,M¡´rk-1,D£Ûi£Ý¡µ(3.12) ÆäÖС´¡¤¡µ±íʾÇóÄÚ»ý¡£ BOMPËã·¨µÄ»ù±¾²½ÖèÈç±í3.1Ëùʾ¡£ ±í3.1BOMPËã·¨²½Öè ÊäÈ룺 ¹Û²â¾ØÕóD¡ÊRL¡ÁN£¬²âÁ¿ÖµÏòÁ¿y¡ÊRL£¬·Ö¿éÊýM£¬¿éÏ¡Êè¶ÈK£» ³õʼ»¯£º ²Ð²îr0=y£» Ë÷Òý¼¯¦«0=«Á£¬µü´ú´ÎÊýk=1£¬Ô­×Ó¼¯¦µ=«Á£¬¹Û²â¾ØÕóµÄ·Ö¿é½á¹¹D=(D£Û1£Ý,D£Û2£Ý,¡­,D£ÛM£Ý)£» Ö÷µü´ú¹ý³Ì£º ²½Öè1,ÕÒµ½¹Û²â¾ØÕóDµÄij¿éD£Ûi£Ý£¬¸ÃÔ­×Ó¿éÓë²Ð²îrµÄÄÚ»ý×î´ó£¬¼Ç¼¶ÔÓ¦µÄË÷ÒýÖµ£¬Èçʽ(3.12)Ëùʾ£» ²½Öè2,¸üÐÂË÷Òý¼¯¦«k=¦«k-1¡È¦Ëk£¬¼Ç¼ÕÒµ½µÄ¹Û²â¾ØÕóÖеÄÔ­×ӿ鼯ºÏ¦µk=£Û¦µk-1,D£Û¦Ëk£Ý£Ý£» ²½Öè3,ÓÃ×îС¶þ³Ë·¨¸üбƽüÐźÅx^k£º x^k=arg min¡¬y-¦µkx^¡¬2 ²½Öè4£¬¸üввîrk£¬Áîk=k+1£» rk=y-¦µkx^k ²½Öè5£¬µ±µü´úÖÕÖ¹Ìõ¼þ£¨²Ð²îÊÕÁ²Çé¿ö»òÕßµü´ú´ÎÊý£©²»Âú×㣬»Øµ½²½Öè1£¬¼ÌÐøÏÂÒ»´Îµü´ú£» ·ñÔòµü´úÖÕÖ¹¡£ Êä³ö£º Ô­ÐźŵıƽüÖµx^¡£ BOMPËã·¨¼Ì³ÐÁËOMPË㷨ͨ¹ýÊ©ÃÜÌØÕý½»»¯²Ù×÷±£Ö¤¸üеIJвîÓëËùÓÐÒÑѡԭ×Ó¿éÕý½»µÄÓŵ㣬ÓÐЧ±£Ö¤Á˵ü´úÐÔÄܵÄÓÅÔ½ÐÔºÍËã·¨µÄµÍ¸´ÔÓ¶È£¬´ó·ù¶È¼õÉÙÁËËã·¨ÊÕÁ²ËùÐèµÄµü´ú´ÎÊý¡£ ºÍ»ìºÏ·¶Êý×îÓÅ»¯Ëã·¨Ò»Ñù£¬BOMPËã·¨Ò²ÐèÒªÖªµÀ¿éÏ¡ÊèÐźŵĿ黮·ÖÐÅÏ¢£¬¶øÇÒºÍOMPÒ»Ñù£¬BOMPÐèÒªÖªµÀÐźŵĿéÏ¡Êè¶È¡£ 3.2.4¿éÆ¥Åä×·×ÙËã·¨ BMPËã·¨¶ÔÓ¦ÓÚBOMPËã·¨µÄÒ»ÖÖÌØÊâÇé¿ö£¬¼´¾ØÕóD¸÷¿éD£Ûl£Ýl=1,2£¬¡­,MÖеÄÁÐÂú×ãÏ໥Õý½»µÄÌØÐÔ(²»Í¬¿é¼äµÄÁв»ÐèÂú×ãÏ໥Õý½»)ʱ£¬¿ÉÒÔÓÃBMPËã·¨»Ö¸´Ðźţ¬BMPÒ²ÐèҪͬʱ֪µÀ¿éÏ¡ÊèÐźŵĿ黮·ÖÐÅÏ¢ºÍÐźŵĿéÏ¡Êè¶È£¬BMPËã·¨µÄ¾ßÌå²½ÖèÈç±í3.2Ëùʾ¡£ ±í3.2BMPËã·¨²½Öè ÊäÈ룺 ¹Û²â¾ØÕóD£¬²âÁ¿ÖµÏòÁ¿y£¬·Ö¿éÊýM£¬¿éÏ¡Êè¶ÈK£» ³õʼ»¯£º ²Ð²îr0=y£¬Ë÷Òý¼¯¦«0=«Á£¬µü´ú´ÎÊýk=1£¬¹Û²â¾ØÕóµÄ·Ö¿é½á¹¹D=(D£Û1£Ý,D£Û2£Ý,¡­,D£ÛM£Ý)£» Ðø±í Ö÷µü´ú¹ý³Ì£º ²½Öè1,ÕÒµ½¹Û²â¾ØÕóDµÄij¿éD£Ûi£Ý£¬¸ÃÔ­×Ó¿éÓë²Ð²îrÄÚ»ý×î´ó£¬¼Ç¼Ë÷ÒýÖµ¦Ë£¬Èçʽ(3.12)Ëùʾ£» ²½Öè2,¸üÐÂË÷Òý¼¯¦«k=¦«k-1¡È¦Ëk£» ²½Öè3,¸üввÈçʽ(3.1)Ëùʾ£¬Áîk=k+1£» ²½Öè4,ÅжÏÊÇ·ñÂú×ãk>K£¬ÈôÂú×㣬ÔòÍ£Ö¹µü´ú£» Èô²»Âú×㣬Ôò·µ»Ø²½Öè1¡£ Êä³ö£º Ô­ÐźŵĹÀ¼ÆÖµx^¡£ BMPËã·¨³õʼ»¯²Ð²îr0=y£¬ÇÒÔÚµÚk´Îµüʱ£¬Í¬Ñù»ùÓÚʽ(3.12)Ñ¡ÔñÓë²Ð²îrk×îÏà¹ØÆ¥ÅäµÄÔ­×Ó¡£µ«Ôڲвî¸üÐÂÕâÒ»²½£¬BMPËã·¨²»ÔÙÐèÒªÔÚÒÑÑ¡Ôñ¼¯ºÏÉÏÀûÓÃ×îС¶þ³Ë·¨¸üвв¶øÊÇÄÜÖ±½Ó¸üввîrkΪ rk=rk-1-D£Û¦«k£ÝD¢k£Û¦«k£Ýrk-1(3.13) Óɱí3.2¿ÉÒÔ¿´³ö£¬ÓÉÓÚûÓнøÐÐÔ­×Ó¿éµÄÕý½»»¯´¦Àí£¬BMPË㷨ÿ´Îµü´úÑ¡³öµÄÔ­×Ó¿éÓëÇ°ÃæÒÑÑ¡³öµÄÔ­×Ó¿é·ÇÕý½»£¬¿ÉÄܻᵼÖÂÖØ¸´Ñ¡ÔñÏàͬԭ×Ó¿éµÄ½á¹û£¬Ê¹µÃËã·¨ÐèÒªºÜ¶à´Îµü´ú²ÅÄÜ´ïµ½ÊÕÁ²£¬Ëã·¨¸´ÔÓÇÒÐźÅÖØ½¨ÐÔÄܵÍÏ¡£ËùÒÔ£¬µ±¾ØÕóD²»Âú×ãÕý½»Ìõ¼þʱ£¬Ö®Ç°½éÉܵÄBOMPËã·¨ÊǸü¼ÓÊʺϵÄÑ¡Ôñ¡£ ´ÓÒÔÉÏ¿éÏ¡ÊèµÄ·ÖÎöºÍ¼¸ÖÖÏÖÓлùÓÚ¿éÏ¡Êè½á¹¹ÐźŵÄÖØ½¨Ëã·¨¼ò½é¿É×ܽáµÃµ½£¬»ùÓÚ¿éÏ¡Êè½á¹¹µÄÐźÅÖØ½¨£¬Äܹ»ÒÔ¸üµÍµÄÒªÇóÂú×ã¾«È·ÖØ½¨ËùÐèÂú×ãµÄÌõ¼þ¡£µ«ËüÃǾùÐèÒªÖªµÀ¿éÏ¡ÊèµÄ¿é»®·ÖÐÅÏ¢¡£¶ÔÓṴ́À·ÀàËã·¨£¬ºÍÆÕÍ¨ÖØ½¨Ëã·¨ÀàËÆ£¬»¹ÐèÒª¶îÍâÒÑÖªÐźŵĿéÏ¡Êè¶È¡£²»¹ý£¬ÏÖÓм¸ÖÖÖØ½¨Ëã·¨²¢Ã»ÓÐÍÚ¾ò¿éÏ¡Êè½á¹¹¸üÉîÈëµÄÌØÐÔ¡£ÓÉ´ËÒý·¢ÁËÖÚ¶àѧÕßÔÚ´Ë»ù´¡ÉÏÌá³öеÄËã·¨¡£ 3.2.5¿éÏ¡Êè×Ó¿Õ¼äѧϰËã·¨ ÏÂÃæÒÔÊÓÆµÊý¾ÝΪÀý£¬½éÉÜBSSL¿ò¼ÜÀ´»ñµÃ¿éÏ¡Êè±íʾÓÃÓÚѹËõÊÓÆµ²ÉÑù¡£Ê×ÏÈ£¬Í¨¹ýÏû³ý×Ó¿Õ¼äµÄ½»¼¯£¬ÀûÓýṹ»¯Ï¡ÊèÀ´ÓÅ»¯¿éÏ¡Êè±íʾ¡£ÔÚ×Ó¿Õ¼äѧϰÖУ¬²ÉÓÃÇó½â»ùÓÚ¿éÏà¹ØÐÔÔ¼Êø×îС»¯ÎÊÌâµÄ·½·¨À´¹²Í¬×îС»¯×ӿռ䲢ÁªºÏ¸÷×Ó¿Õ¼ä»ù¾ØÕóÖ®¼äµÄ½üËÆÎó²îºÍÏà¹ØÐÔ¡£ÑµÁ·µÃµ½µÄ×Ó¿Õ¼äÖ®¼äÏ໥Õý½»Ê¹µÃÏ¡Êè±íʾ¿É±»½øÒ»²½Ñ¹Ëõ£¬¶ÔÓ¦ÓÚÏàÓ¦×Ó¿Õ¼äµÄ»ù¡£Ö¤Ã÷ͨ¹ý¸Ã¿ò¼Ü¿É½¥½øµÃµ½×îÓŽüËÆ½â£¬ÆäµÈ¼ÛÓÚÄâÕóÔ¼ÊøÏµÄͶӰ×î´ó»¯ÎÊÌ⣻ Ö¤Ã÷BSSL·½·¨ÔÚ¿éRIPÌõ¼þϵÄÎȶ¨Öع¹¿ÉµÃµ½±£Ö¤¡£¸Ã·½·¨Äܹ»ÓÐЧ¿Ë·þÊý¾ÝÇý¶¯×Ó¿Õ¼äÁªºÏÄ£ÐÍ(Union of Dataª²Driven Subspace,UoDS)ÓÉÓÚ×Ó¿Õ¼ä¹ØÁªÎÞ·¨»ñµÃ¿éÏ¡ÊèµÄÎÊÌ⣬ͨ¹ýÓÅ»¯ÊÓÆµÐźžֲ¿¼¸ºÎ½á¹¹Ö¸Ê¾µÄ½á¹¹»¯Ï¡ÊèÐ͸ĽøUoDSÄ£ÐÍ¡£ ½øÒ»²½µØ£¬BSSL¿ò¼Ü¿ÉÒÔ½øÒ»²½À©Õ¹µ½»ùÓÚKronecker»ý¿ò¼ÜµÄ·º»¯¿éÏ¡Êè×Ó¿Õ¼äѧϰ(Generalized Block Sparse Subspace Learning,GBSSL)£¬²¢½«ÆäÓ¦Óõ½Ñ¹ËõÕÅÁ¿²ÉÑùÖС£Í¨¹ýÔÚ¸÷¸öÕÅÁ¿Ä£Ê½ÏÂѵÁ·µÃµ½µÄ¶àÏßÐÔ»ùÉÏÕûºÏ¿éÏ¡Êè±íʾÓÅ»¯»ùÓÚÕÅÁ¿µÄ±íʾ¡£ÊµÑé½á¹û±íÃ÷£¬¸Ã¿ò¼ÜÓÃÓÚѹËõÊÓÆµ²ÉÑù¿É»ñµÃ¸ü¸ßµÄÎȶ¨ÐÔºÍЧÂÊ¡£ ´«Í³Ñ¹Ëõ¸ÐÖªÓÉÓÚ¶àάÐźÅÏòÁ¿»¯µÄ±íʾÎÞ·¨¾«È·²¶»ñÄÚÔڵĽṹ¡£¾¡¹Ü»ùÓÚÕÅÁ¿µÄ¸÷ÖÖѹËõ¸ÐÖª·½·¨¿ÉÒÔ±£³Ö¶àάÐźÅÄÚÔڵĸ÷Öֽṹ£¬È»¶øÆä»ùÓÚµ¥×Ó¿Õ¼äÄ£Ð͵ļÙÉèµ¼ÖÂÆä²ÉÑùЧÂʺÍÐÔÄÜÊܵ½ÏÞÖÆÔ¼Êø¡£Îª´Ë£¬ÎÄÏ×£Û6£ÝÌá³öÁËUoDSÄ£ÐÍ£¬ÀûÓÿéÏ¡ÊèÐÔÈ¥»ñµÃ×ÔÊÊÓ¦ºÍ·Ç¾Ö²¿µÄ»ù²¢ÓÃÔÚѹËõÊÓÆµ²ÉÑùÖС£UoDSÄ£Ðͼٶ¨ÁªºÏÖеÄ×Ó¿Õ¼äÖ®¼äÏ໥¶ÀÁ¢£¬¿éÏ¡Êè±íʾµÄ½ô´ÕÐÔ»áÊܵ½ÁªºÏÖи÷×Ó¿Õ¼äÏ໥¶ÀÁ¢¼ÙÉèÏÂ×ÖµäѵÁ·µÄÓ°Ïì£Û7£Ý£¬È»¶øÏÖʵÖÐÐí¶à´¦ÔÚ²»Í¬×Ó¿Õ¼äµÄ²ÉÑùÐźż¯ºÏÍùÍù´æÔÚ½»¼¯¡£ÕâÒ»ÊÂʵÒâζ×Å×ӿռ佫ÓÉ»ùÖй²Í¬µÄ¼¸¸öÔ­×ÓÕųɣ¬Òò´Ë¿éÏ¡Êè½á¹¹»á±»ÑÚ¸ÇʹµÃÖØ¹¹ÐÔÄܽµµÍ¡£ÓÐЩ³¡¾°Ï¡ÊèÏòÁ¿µÄ·ÇÁãϵÊý±é²¼ÔÚËùÓлùÉÏ¡£Òò´Ë£¬±¾½Ú½éÉÜ¿éÏ¡Êè×Ó¿Õ¼äѧϰÒÔÏû³ý×Ó¿Õ¼äµÄ½»¼¯£¬Í¬Ê±±£³Ö×Ó¿Õ¼äÁªºÏµÄ»ùÖ®¼äµÄ²»Ïà¹ØÐÔ¡£½ô´ÕµÄ¿éÏ¡Êè±íʾ¿ÉÒÔͨ¹ýÇó½â×îС»¯¿éÏà¹ØÎÊÌâÀ´»ñµÃ¡£´ËÍ⣬Õë¶Ô·º»¯µÄѹËõÕÅÁ¿²ÉÑù£¬¿É²ÉÓ÷º»¯µÄÊý¾ÝÇý¶¯ÕÅÁ¿×Ó¿Õ¼äÁªºÏÄ£ÐÍ£¬ÔÚÕÅÁ¿±íʾÖнøÈëÁ˽ṹ»¯Ï¡Êè²¢¸ø³öÁË¿éÏ¡ÊèÌõ¼þϵÄÈ¡µÃ×îÓŽâµÄÌõ¼þ¡£ÁíÍ⣬ÓйØÕÅÁ¿µÄ»ù±¾¸ÅÄÔÚ3.8½Úµ¥¶À½éÉÜ£¬±¾½Ú²»×öÏêϸ½éÉÜ¡£ ÉèѵÁ·¼¯ÎªX£¬¸ø¶¨t¸ö¾ÛÀà´ØG=£ÛG1,G2,¡­,Gt£Ý£¬ÀûÓÃÎÄÏ×£Û6£ÝÖеÄUoDSÄ£ÐÍ£¬¿ÉÒÔÉú³ÉÒ»¸ö°üº¬r¸ö»ùÏòÁ¿µÄ»ù¾ØÕó¦·*=£Û¦·*1,¦·*2,¡­,¦·*t£Ý¡ÊRn¡Ár£¬ÆäÖÐr=¡Æti=1di>n£¬¾ÛÀà´ØGi±»ÈÏΪ°üº¬ÏàËÆµÄÐźţ¬Æä¶ÔÓ¦µÄ×Ó¿Õ¼äÓɦ·*iÕųɡ£Òò´Ë£¬±¾½Ú½éÉÜBSSL·½·¨£¬ÒÔ½øÒ»²½ÓÅ»¯½á¹¹»¯Ï¡ÊèÐÔϵÄѵÁ·ºÍ±íʾ¡£ÎªÁËÒÖÖÆ´ØµÄ½»¼¯²¢±£Ö¤Ï¡Êè±íʾÖеĿéÏ¡ÊèÐÔ£¬½«Ã¿¸ö´ØµÄ¿éÏà¹ØÐÔ×îС»¯£¬Æä×îÓÅ»ù¾ØÕóD=£ÛD1,D2,¡­,Dt£ÝµÄÇó½â¿ÉÃèÊöΪÏÂÃæµÄÓÅ»¯ÎÊÌ⣺ D= arg min¦·*i,Ci¡Æti=1¡¬Gi-¦·*iCi¡¬22+¦Ë¡Æti=1¡Æpij=1¡¬cji¡¬1+¦Î¡Æi¡Ùj¦¸(¦·*i,¦·*j) (3.14) ÆäÖÐCi=£Ûc1i,c2i,¡­,cpii£Ý¡ÊRdi¡ÁpiΪµÚi¸ö´ØµÄÏ¡Êè±íʾ£¬ÆäÁÐÏòÁ¿cji¶ÔÓ¦ÓÚ²ÉÑùÐźÅxji,i¡Ê£Û1,t£Ý,j¡Ê£Û1,pi£Ý£» ¿éÏà¹ØÏµÊý¦¸(¦·*i,¦·*j)=¡¬(¦·*i)T¦·*j¡¬2F£» ÓÃÓÚÆ½ºâÖØ¹¹Îó²îµÄ²ÎÊý¦Ë¼°¦Î·Ö±ð±íʾϡÊè¶ÈÒÔ¼°¿éÏà¹ØÐԳͷ£ÏµÊý¡£ ÓÉÓÚ¿éÏà¹ØÐԳͷ£ÏîÓëtd2i³ÉÕý±È£¬Òò´Ë¦Î×ÔÊÊÓ¦µ÷Õû£¬³õʼֵΪ¦Î0¡£ÔÚʽ(3.14)ÖУ¬µÚÒ»Ïî»ùÓÚ¶ÔÓ¦µÄ»ùDi£¬¶ÔµÚi¸ö´Ø½øÐÐ×îС»¯Öع¹Îó²î£¬¶øµÚ¶þÏîºÍµÚÈýÏî·Ö±ðͨ¹ýÔ¼ÊøCiµÄÏ¡ÊèÐÔÒÔ¼°×Ó¿Õ¼äÖ®¼äµÄ¿éÏà¹ØÐÔÀ´ÓÅ»¯Ï¡Êè±íʾ¡£Ó¦¸Ã×¢ÒâµÄÊÇ£¬CiµÄ·ÇÁãϵÊý½«±»ºÏ²¢Îª¿é£¬ÒòΪ×Ó¿Õ¼äÖ®¼äµÄ½»¼¯±»²»Ïà¹ØµÄ»ùËùÏû³ý¡£ ʽ(3.14)ÊÇ͹ÎÊÌ⣬¿ÉÒÔͨ¹ý½»ÌæÖ´ÐÐÏ¡Êè±àÂëºÍ»ù¸üÐÂÀ´½â¾ö¡£ÔÚÿ´Îµü´úÖУ¬¹Ì¶¨»ù¦·*i²»±ä£¬Ï¡Êè±íʾCi=£Ûc1i,c2i,¡­,cpii£Ýͨ¹ý¶ÔµÚi¸öÀà´Ø(¸ÃÀà´Ø°üº¬ÁËpi¸öÊý¾Ýµã)Gi=£Ûx1i,x2i,¡­,xpii£ÝµÄÏ¡Êè±àÂëµÃµ½£¬²¢ÇÒ¿ÉÃèÊöΪÈçÏÂÓÅ»¯ÎÊÌ⣺ cji= arg min{cji}j=1,2,¡­,pi¡Æpij=1¡¬xji-¦·*icji¡¬22+¦Ë¡¬cji¡¬1(3.15) Ëæºó£¬¸ù¾ÝµÃµ½µÄcji£¬¶ÔµÚi¸öÀà´Ø½øÐлùµÄ¸üÐÂѧϰ£¬Ñ§Ï°¹ý³ÌËù¶ÔÓ¦µÄÓÅ»¯ÎÊÌâÈçÏ£º Di= arg min¦·*i¡Æpij=1¡¬xji-¦·*icji¡¬22+¦Ë¡¬cji¡¬1+¦Î¡Æj¡Ùi¦¸(¦·*i,¦·*j)(3.16) Òò´Ë£¬Ã¿¸ö¾ÛÀà´Ø¶¼±»¶ÀÁ¢µØÓÅ»¯ÒÔ²úÉú×Ó¿Õ¼äÁªºÏ»ù¾ØÕóD=£ÛD1,D2,¡­,Dt£Ý¡£ BSSL¿ÉÒÔÏÔÖø½µµÍ¿éµÄÏà¹ØÐÔ£¬´Ó¶ø´Ù½ø¿éÏ¡ÊèÐÔ£¬Èçͼ3.2Ëùʾ(×Ó¿Õ¼äÊýÁ¿Îª50²¢ÇÒÿ¸ö×Ó¿Õ¼äÓÉ10¸ö»ùÏòÁ¿×é³É)£¬ÆäÖÐBC±íʾ¿éÏ¡ÊèϵÊý(Block coherence)£¬¸Ãͼ±íÃ÷ͨ¹ýBSSLËã·¨¸÷¸ö×Ó¿Õ¼äÓëÆäÓà×Ó¿Õ¼äµÄ×î´óºÍ×îС¿éÏà¹ØÐÔ±»ÒÖÖÆ¡£Í¼3.3ÁгöÁËÓÉUoDSºÍBSSLµÃµ½µÄÏàÓ¦»ù£¬ÆäÖÐͨ¹ýBSSLÓÅ»¯µÃµ½µÄ»ùµÄÐÐÊÇ¿ÉÇø·ÖµÄ¡£ÕâÒ»ÊÂʵÒâζ×ÅBSSLÖеĿéÏà¹ØÐÔ×îС»¯Ïû³ýÁË×Ó¿Õ¼äµÄ½»¼¯¡£´ËÍ⣬ͼ3.4ÌṩÁËÁ½¸öÀý×ÓÀ´ÏÔʾËùÌá³öµÄ·½·¨µÄÓÐЧÐÔ¡£ÓÉBSSLµÃµ½µÄÖØ¹¹±íʾÏòÁ¿µÄÏ¡ÊèÐÔÊǽô´ÕµÄ£¬½ø¶øµÃµ½¾«È·Öع¹£¬¶øUoDSµÄ·ÇÁãϵÊý±é²¼ÔÚ¶à¸ö×Ó¿Õ¼äÖС£ ͼ3.2ÔÚAkiyoÐòÁÐÉÏ£¬ÀûÓÃUoDSºÍBSSLµÃµ½µÄ¿éÏà¹ØÐÔ±È½Ï Í¼3.3UoDSÄ£Ð͵õ½µÄ»ùÓë¾­¹ýBSSLµÃµ½µÄÓÅ»¯ºóµÄ»ùµÄ±È½Ï ͼ3.4BSSL·½·¨ÓëUoDSÄ£ÐÍµÄ±È½Ï ¶¨Òå3.1(ÄâÕó)M=(G,T)ÊÇÒ»¸ö¶þÔª×飬ÆäÖÐGΪÓÐÏÞ¼¯£¬TΪÓÉGµÄ×Ó¼¯¹¹³ÉµÄ¼¯×壬Èô¶ÔÈÎÒâµÄ×Ó¼¯X,X¡äª¼G£¬Âú×ãÈçÏÂÌõ¼þ£º (1) ÒÅ´«ÐÔ£º Èç¹ûX¡ÊT£¬Xª¼X¡ä£¬ÄÇôX¡ä¡ÊT£» (2) Ôö¹ãÐÔ£º Èç¹ûX,X¡ä¡ÊT£¬»ùÊýX¡äIn£¬²¢ÇÒÿ¸ö´ØGiÖаüº¬ÁËÏàËÆµÄÕÅÁ¿Êý¾Ý£¬ÕâЩÕÅÁ¿Êý¾Ý´¦ÔÚͬһ¸öÕÅÁ¿×Ó¿Õ¼äSiÖУ¬¸Ã×Ó¿Õ¼äÓÉ»ù¦·(1)i«á¦·(2)i«á¡­«á¦·(N)iÕųɡ£ÔÚ´Ë»ù´¡ÉÏ£¬ÀûÓ÷º»¯µÄ¿éÏ¡Êè×Ó¿Õ¼äѧϰ½øÒ»²½ÑµÁ·£¬ÓÅ»¯½á¹¹»¯Ï¡ÊèµÄÕÅÁ¿±íʾ¡£ÔÚµÚnģʽÖУ¬¶Ôÿ¸ö´Ø½øÐпéÏà¹ØÐÔ×îС»¯Ô¼ÊøÀ´ÒÖÖÆ´Ø¼äÏཻ¶ÔѵÁ·µÄ²»ÀûÓ°Ï죬½ø¶ø±£Ö¤ÔÚÕÅÁ¿±íʾϵĿéÏ¡ÊèÐÔ£¬ÆäÃèÊöÈçÏ£º D(n)= arg min¦·(n)i,¦¨(n),i¡Æti=1¡¬Gi-¦·(n)i¦¨(n),i¡¬22+¦Ë¡Æti=1¡Æpij=1¡¬¦Èji¡¬1+¦Î¡Æj¡Ùi¦¸(¦·(n)i,¦·(n)j) (3.21) ÆäÖЦ¨(n),i=£Û¦È1i,¦È2i,¡­,¦Èpii£Ý¡ÊRPi¡Ápi±íʾµÚi¸ö´ØÀ࣬µÚnģʽÁÐÏòÁ¿¦Èji¶ÔÓ¦ÓÚÕÅÁ¿Xji£¬i¡Ê£Û1,t£Ý£¬j¡Ê£Û1,pi£Ý¡£ ÀàËÆÓÚBSSL£¬ÓÃÓÚÔÚ¸÷¸öģʽÏÂÆ½ºâ»Ö¸´Îó²îµÄ²ÎÁ¿¦ËÒÔ¼°¦Î·Ö±ð±íʾϡÊèÐԺͿéÏà¹ØÐԵijͷ£ÏµÊý£¬¿éÏà¹ØÐÔÅбðÏîÓëtP2i³É±ÈÀý£¬¦ÎÓɳõʼֵ¦Î0½øÐж¯Ì¬µÄµ÷½Ú¡£ÔÚʽ(3.21)ÖУ¬µÚÒ»Ïî¶ÔµÚi¸ö´ØÒÔ¼°ÏàÓ¦µÚnģʽϵĻùD(n)i½øÐÐÖØ¹¹Îó²î×îС»¯¡£Í¬Ê±£¬µÚ¶þÏîºÍµÚÈýÏî·Ö±ðÓÃÓÚÓÅ»¯Ô¼Êø¿éÏ¡Êè±íʾ¦¨(n),iºÍÕÅÁ¿×Ó¿Õ¼äÖ®¼äµÄ¿éÏà¹ØÐÔ¡£ÐèÒªÖ¸³öµÄÊÇ£¬µ±ÕÅÁ¿×Ó¿Õ¼äÖ®¼äµÄ½»¼¯±»È¥³ýʱ£¬ÔÚ·ÇÏà¹Ø»ùϵıíʾ¦¨(n),iÖеķÇÁãϵÊý»á±»ºÏ²¢Îª¿é¡£Í¬ÑùµØ£¬ÀàËÆÓÚBSSL£¬Ê½(3.21)µÄ½â¿ÉÒÔÔÚ¸÷¸öģʽÏ£¬Í¨¹ýÀûÓý»ÌæµÄÏ¡Êè±àÂëºÍ»ù¸üйý³ÌÀ´½â¾ö¡£ÔÚÿ¸öµü´ú¹ý³ÌÖУ¬ÔÚ¸ø¶¨µÄ»ù¦·(n)iÏ£¬¦¨(n),i=£Û¦È1i,¦È2i,¡­,¦Èpii£Ý¿ÉÒÔͨ¹ýÔÚµÚi¸ö´ØÀàGi=£ÛX1i,X2i,¡­,Xpii£ÝÖнøÐÐÏ¡Êè±àÂëµÃµ½£¬ÆäÖÐGi°üº¬ÁËpi¸öÕÅÁ¿Êý¾Ý£¬ÆäÏ¡Êè±àÂëÇó½âÎÊÌâÈçÏ£º ¦Èji= arg min{¦Èji}j=1,2,¡­,pi¡Æpij=1¡¬Xji-¦·(n)i¦Èji¡¬22+¦Ë¡¬¦Èji¡¬1(3.22) ½ô½Ó×Å£¬ÀûÓÃʽ(3.22)µÃµ½µÄ¦Èji£¬¿ÉÒÔ¶ÔµÚi¸ö´ØÀà½øÐлù¾ØÕóµÄ¸üУ¬¸üз½Ê½¿ÉÃèÊöΪÏÂÃæµÄÓÅ»¯ÎÊÌ⣺ D(n)i= arg min¦·(n)i¡Æpii=1¡¬Xji-¦·(n)i¦¨(n),i¡¬22+¦Ë¡¬¦Èji¡¬1+¦Î¡Æj¡Ùi¦¸(¦·(n)i,¦·(n)j) (3.23) ÖÁ´Ë£¬¾ÍʵÏÖÁ˶Ôÿ¸ö¾ÛÀà´Ø¶ÀÁ¢µØ½øÐÐÓÅ»¯µÃµ½µÄ»ùD(n)=£ÛD(n)1,D(n)2,¡­,D(n)t£Ý£¬²¢½«Ö®ÓÃÓÚ¶ÔÕÅÁ¿×Ó¿Õ¼äÁªºÏÄ£Ð͵ĻùµÄÓÅ»¯¡£ 3.2.6¿éÏ¡Êè·Ç²ÎÊý±´Ò¶Ë¹¹À¼Æ ½üÄêÀ´£¬¶ÔÓÚ¾ßÓпé×´½á¹¹µÄÏ¡ÊèÐźŵĻָ´£¬Ç°ÃæÒѾ­½éÉÜÁËBOMP¡¢BMP¡¢BSSLµÈ¾­µäËã·¨¡£µ«ÊÇ£¬ÕâЩËã·¨¶¼ÐèÒª·Ö¿éµÄÏà¹ØÐÅÏ¢²ÅÄÜ׼ȷµØ»Ö¸´¿éÏ¡ÊèÐźš£ÁíÍâµÄ»Ö¸´Ëã·¨£¬ÀýÈçStructª²OMP£Û11£Ý£¬ËäÈ»²»ÐèÒª·Ö¿éÐÅÏ¢µ«ÊÇÐèÒªÒÑÖªÆäËûµÄһЩÏÈÑéÐÅÏ¢£¬ÈçÏ¡ÊèÐźÅÖзÇÁãÔªËØµÄ¸öÊý¡£ÔÚѹËõ¸ÐÖªµÄ»·¾³Ï£¬Èç¹û·Ö¿éµÄÏà¹ØÐÅϢδ֪£¬ÄÇôҪÏë´Ó²âÁ¿ÖµÖо«È·µØ»Ö¸´Ô­Ê¼Ðźŷdz£À§ÄÑ¡£ÔÚʵ¼ÊÓ¦ÓÃÖУ¬ÐźÅÄ£Ð͵ĺܶà²ÎÊýÄÑÒÔÔ¤Öª£¬ËùÒÔ¶ÔÓÚ¿é½á¹¹Ï¡Êè»Ö¸´ÎÊÌ⣬ÎÞ²ÎÊýµÄËã·¨·Ç³£ÓÐÓᣵ«Êǵ½Ä¿Ç°ÎªÖ¹£¬¿ÉÒÔ¾«È·µØ»Ö¸´¿éÏ¡ÊèÐźŵÄÕâÀàÎÞ²ÎÊýµÄËã·¨»¹ÊÇÁÈÁÈÎÞ¼¸¡£×î½ü£¬CluSSª²MCMC£Û12£ÝÒÔ¼°BMª²MAPª²OMP£Û13£ÝËã·¨±»Ìá³ö£¬ÕâЩËã·¨¿ÉÒÔÓ÷dz£ÉÙµÄÏÈÑéÐÅÏ¢À´¾«È·µØ»Ö¸´¿éÏ¡ÊèÐźš£ ÔÚ¾­µäµÄËæ»ú±´Ò¶Ë¹·½·¨ÖУ¬³£³£»áͨ¹ýͼģÐÍ(GM£Û14£Ý)ÒÔ¼°Òþ±äÁ¿À´ÃèÊö²âÁ¿ÖµÓëÄ£ÐͲÎÊýÖ®¼äµÄÁªºÏ¸ÅÂÊ·Ö²¼(»òÏà¹ØÐÔ)¡£ÕâÖÖ²»½ö²ÉÓÃÁËͼģÐͶøÇÒÒýÈëÁËÒþ±äÁ¿µÄ±´Ò¶Ë¹·½·¨³ÆÎªÒþ±äÁ¿·ÖÎö(LVA£Û15£Ý)¡£²¢ÇÒ£¬ÎÞ²ÎÊýµÄ±´Ò¶Ë¹¹À¼ÆÆ÷Ò²¿ÉÓÉÒþ±äÁ¿·ÖÎöµÃµ½¡£ÁíÍ⣬ϡÊèϵÊýµÄ½á¹¹Ô¼Êø¿ÉÒÔ²ÉÓÃͼģÐ͵ķ½Ê½ÒýÈëÒþ±äÁ¿·ÖÎöµÄÀíÂÛ¿ò¼ÜÀï£Û16ª²18£Ý¡£ÀýÈ磬»ùÓÚͼģÐ͵ľۼ¯½á¹¹Ï¡Êè»Ö¸´Ëã·¨(LaMPËã·¨£Û18£Ý)£¬ÕâÖÖËã·¨ÊÇÔÚµü´úµÄ¹ý³ÌÖÐÓÉÒþ±äÁ¿½øÐÐÔ¼ÊøÆ¥Å䣬²¢ÇÒÓÉͼÇиî(Graph Cut)À´ÓÅ»¯ËüµÄÔ¼Êø×¼Ôò£¬ËùÒÔLaMPËã·¨²¢²»ËãÊÇÕæÕýÒâÒåÉϵı´Ò¶Ë¹·½·¨¡£¸üÖØÒªµÄÊÇ£¬¶ÔÓÚ²¡Ì¬ÏßÐÔÄæÎÊÌâÀ´Ëµ£¬¿ÉÓɱ´Ò¶Ë¹·½·¨µÃµ½ÎÒÃÇÏëÒªµÄ·Ç²ÎÊýËã·¨£Û18ª²19£Ý¡£ ±¾½ÚΪÁËÐðÊöµÄÁ¬¹áÐÔºÍϵͳÐÔ£¬Ê×Ïȼòµ¥½éÉܱ´Ò¶Ë¹Ñ¹Ëõ¸ÐÖªÀíÂÛ£» È»ºóÓñ´Ò¶Ë¹¿ò¼Ü¸ø³ö¿éÏ¡ÊèÐźŵÄÏÈÑéÄ£ÐÍ£» ×îºó¶ÔÓÚ»ùÓÚMCMC²ÉÑùµÄ¿éÏ¡ÊèÐźű´Ò¶Ë¹»Ö¸´Ëã·¨½øÐÐÏêϸ½éÉÜ¡£ 1. ±´Ò¶Ë¹Ñ¹Ëõ¸ÐÖª ÒÑÖªÐźÅxÊÇNά¿ÉѹËõµÄ£¬²¢ÇÒËüµÄÏ¡Êè±í´ï»ùΪ¦·¡ÊRM¡ÁN,Ò²¾ÍÊÇx=¦·s¡£¼ÙÉèss´ú±íÒ»¸ö¾ßÓÐM¸ö·ÇÁãÖµµÄNάÏòÁ¿£¬Æä·ÇÁãÖµÓësÖеÄM¸ö·ùÖµ×î´óµÄÔªËØÏàͬ£» ¼ÙÉèse´ú±íÒ»¸ö¾ßÓÐN-M¸ö·ÇÁãÖµµÄNάÏòÁ¿£¬ÆäÁãÖµÓësÖеÄN-M¸ö·ùÖµ×îСµÄÔªËØÏàͬ¡£ËùÒÔ£¬¿ÉµÃµ½s=ss+se£¬²¢ÇÒ£º y=¦¨s=¦¨ss+¦¨se=¦¨ss+ne ÆäÖЦ¨=A¦·Îª·ûºÏRIPÌõ¼þµÄ¸ÐÖª¾ØÕó£¬ne¿ÉÒÔ¿´×÷Ò»¸öÁã¾ùÖµ¸ß˹ÔëÉùÏòÁ¿¡£ ÔÚʵ¼ÊÖУ¬²âÁ¿ÖµÒ²ÓпÉÄܱ»ÔëÉùÎÛȾ£¬ËùÒÔÎÒÃÇÒ²ÓÃÒ»¸öÁã¾ùÖµ¸ß˹·Ö²¼nmÀ´±íʾ²âÁ¿ÔëÉù¡£ÔòÉÏʽ¿ÉÒÔ¸ÄдΪ y=¦¨ss+ne+nm=¦¨ss+n(3.24) ÆäÖеÄÔëÉùn±»µ±×÷ÊÇ·½²î¦Ò2δ֪Áã¾ùÖµ¸ß˹ÔëÉù¡£ ÖµµÃ×¢ÒâµÄÊÇ£¬ÒòΪѹËõ¸ÐÖª¶ÔÐźŵIJÉÑùºÍѹËõ¶¼ÔÚÒ»¸ö²½Ö裬ËùÒÔÕâÀïµÄMªîN£¬Òò´Ë»Ö¸´Ï¡ÊèÐźÅssµÄÎÊÌâʵ¼ÊÉÏÊÇÇó½âÒ»¸öÇ·¶¨ÏßÐÔ·½³ÌµÄÎÊÌ⡣ΪÁË·½±ã£¬´Ó´ËÎÒÃÇÓÃs´úÌæss£¬µ«ÎÒÃǸÐÐËȤµÄ»¹ÊÇϵÊýµÄÏ¡Êè½â¡£ÁíÍ⣬¼ÇÁã¾ùÖµ¸ß˹ÔëÉùnµÄ·½²î¦Ò2µÈÓÚ¦Á-10£¬Ôò¹ØÓÚ²âÁ¿µÄ¸ßË¹ËÆÈ»Ä£ÐÍ¿ÉÒÔ±»ÃèÊöΪÈçÏÂÐÎʽ£º p(ys)¡Øexp-¦Á02¡¬y-¦¨s¡¬2(3.25) È»ºó¿ÉÒÔÓÉ×î´óËÆÈ»¹À¼ÆÆ÷»ñµÃÒ»¸ö×îС¶þ³Ë»Ø¹éËã·¨£º s^= arg mins¡¬y-¦¨s¡¬2 (3.26) ÏÔÈ»£¬ÉÏʽµÄ×îС¶þ³Ë»Ø¹éËã·¨»¹µÃÐèÒªÌí¼ÓÒ»¶¨µÄÔ¼ÊøÌõ¼þ£¬²ÅÓпÉÄÜÇó³öʽ(3.24)µÄ½â¡£ Òò´Ë£¬ÔÚʽ(3.26)ÖÐÒýÈëÏ¡ÊèÏÈÑé£Û20ª²22£Ý£¬ÀýÈ磺 p(s)¡Øexp-¡ÆNi=1sip(3.27) ÆäÖвÎÊýpȡֵ·¶Î§Îª£Û0,1£Ý¡£¼ÙÉè¸ø¶¨µÄ²âÁ¿yÂú×ãʽ(3.25)ËùÃèÊöµÄ¸ßË¹ËÆÈ»¸ÅÂÊÄ£ÐÍ£¬²¢ÇÒÒýÈëʽ(3.27)µÄÏ¡ÊèÏÈÑ飬ÄÇô¶Ôʽ(3.25)µÄ×î´óºóÑé¸ÅÂʽøÐÐÇó½â£¬¿ÉµÃ s^= arg min ¦Ës¡¬y-¦¨s¡¬2+¡ÆNi=1sip(3.28) ÆäÖвÎÊý¦Ë=¦Á0Ϊһ¸öƽºâ²ÎÊý£¬ËüÔÚÏ¡ÊèÐÔºÍ¹Û²âÆ¥Åä¶ÈÖ®¼äÆðµ÷ºÍ×÷Óᣠµ±²ÎÊýpµÄȡֵÇ÷ÓÚÁãʱ£¬ÃèÊöÏ¡ÊèÏÈÑéµÄʽ(3.27)½«»áÇ÷½üÓÚL0·¶Êý£¬Ò²¾ÍÊǶÔÏòÁ¿sÖеķÇÁãÔªËØµÄÊýÄ¿½øÐж¨Ò壺 ¡¬s¡¬0=¡ÆNi=1Isi¡Ù0 ÆäÖеķûºÅI¡¤´ú±íµÄÊÇָʾº¯Êý¡£ ʵ¼ÊÉÏ£¬ÈôÔÚÕâÖÖp¡ú0Ìõ¼þ϶Ôʽ(3.27)½øÐÐÇó½â½«ÊǷdz£À§Äѵģ¬ÒòΪÕâÊôÓÚÒ»¸öNPª²ÄÑÎÊÌâ¡£ Èôµ±²ÎÊýp=1ʱ£¬Ê½(3.28)ËùÃèÊöµÄÓÅ»¯ÎÊÌâ¾Í»áת»¯ÎªÒ»¸ö͹ÓÅ»¯ÎÊÌâ¡£ Ŀǰ£¬¶ÔÓÚÇó½âÕâÖÖ͹ÓÅ»¯ÎÊÌâÀ´Ëµ£¬ÒѾ­ÓкܶàÏàÓ¦µÄ¾­µäµÄËã·¨£¬ÀýÈç»ù×·×ÙËã·¨£Û20£Ý¡£ÁíÍ⣬ÔÚÎÄÏ×£Û23£ÝÖÐÒѾ­Ö¤Ã÷£¬ÈôԭʼÐźÅ×㹻ϡÊ裬Ôò»ù×·×ÙËã·¨ÊÇ¿ÉÒÔ»ñµÃԭʼÐźŵÄÕæÊµ½âµÄ¡£¶øµ±²ÎÊýpȡֵ·¶Î§Îª(0,1)ʱ£¬Ôòʽ(3.28)ËùÃèÊöµÄÓÅ»¯ÎÊÌâ¾Í»áת»¯ÎªÒ»¸ö·Ç͹ÓÅ»¯ÎÊÌ⣬¶øÔÚÄ³Ð©ÌØ¶¨µÄÌõ¼þÏ£¬´ËÀàÎÊÌâµÄ½âÓëÕæÊµÏ¡ÊèÐźű¾Éí¸ü¼Ó½Ó½ü£Û24£Ý¡£ ËäÈ»ÔÚѹËõ¸ÐÖªÀíÂÛ¿ò¼ÜÏ£¬¿ÉÒÔͨ¹ý×î´óºóÑé¹À¼ÆÀ´Çó½âԭʼϡÊèÐźŵĽüËÆÖµ¡£µ«ÊÇ£¬ÓÃÕâÖÖ·½Ê½Çó½âµÄͬʱ»¹ÐèÒª¹À¼ÆÊ½(3.28)ÖÐµÄÆ½ºâ²ÎÊý¦Ë»òÕßÌáǰ¶ÔËü½øÐÐÔ¤Éè¡£ÁíÍ⣬ҪÊÇÔÚʽ(3.27)ÖÐÒýÈ볬¸ß˹ÏÈÑ飬һ°ã»áµ¼ÖÂÆ½ºâ²ÎÊý¦ËµÄºóÑé·Ö²¼²»¿É·ÖÎö£¬Ôò»áÖÂʹԭÀ´ÎÊÌâµÄÇó½â¸ü¼Ó¸´ÔÓ»¯¡£Òò´Ë£¬ÍƼöʹÓ÷DzÎÊýµÄ·½·¨À´½â¾öÏ¡ÊèÏßÐÔÄæÎÊÌâ¡£ ΪÁËÔÚѹËõ¸ÐÖªÀíÂÛ¿ò¼ÜÏ ͼ3.5±´Ò¶Ë¹Ñ¹Ëõ¸ÐÖª·Ö²ãÄ£ÐÍ Ê¹Óñ´Ò¶Ë¹·½·¨À´ÃèÊöѹËõ¸ÐÖªµÄ²âÁ¿¹ý³Ì,¿ÉÒÔ²ÉÓ÷ֲãµÄ±´Ò¶Ë¹Ä£ÐÍ£Û25ª²27£Ý£¬ËüÒ²±»³ÆÎª±´Ò¶Ë¹Ñ¹Ëõ¸ÐÖª¡£ ¸üÖØÒªµÄÊÇ£¬·Ö²ã±´Ò¶Ë¹Ä£Ð͵ÄʹÓÿÉÒÔʹϡÊèÏßÐÔÄæÇó½âµÄ¹ý³Ì·Ç²ÎÊý»¯£¬Ê¹µÃÕâÖÖÎÊÌâµÄ½â¾ö¸ü¼òµ¥»¯£¬Èçͼ3.5Ëùʾ¡£Èç¹ûÔÚʵ¼ÊµÄ±´Ò¶Ë¹Ñ¹Ëõ¸Ð֪ģÐÍÖÐÒýÈ볬¸ß˹ÏÈÑ飬½«»áµ¼Ö¸ü¸´ÔÓµÄÎÊÌâÇó½â¡£ÎªÁËʹÎÊÌâ¼òµ¥»¯£¬¼ÙÉèÏ¡ÊèÐźŷþ´Ó¸ß˹ÏÈÑ飬²¢¼ÇÕâ¸ö¸ß˹ÏÈÑéµÄ¾«¶È²ÎÊýΪ¦Á=£Û¦Á1,¦Á2,¡­,¦Ái,¡­,¦ÁN£Ý£¬×îºó¼ÙÉè¦ÁÂú×㳬ÏÈÑéÙ¤Âí·Ö²¼£º p¦Áia,b¡Ø¦Áa-1ie-b¦Ái(3.29) ÆäÖÐa>0£¬b>0£¬ÇÒËüÃÇÒ»°ã»á±»ÉèÖÃΪ·Ç³£Ð¡µÄÊýÖµ¡£ Ôò¿ÉµÃµ½ÒÔϵÄÙ¤Âíª²¸ß˹ģÐÍ£º ps¦Á¡Ø¡ÇNi=1exp-¦Ái2s2i(3.30) ¶øÊ½(3.29)ÖеIJÎÊýa,b>0£¬²¢ÇÒËüÃÇÒ»°ã»á±»ÉèÖÃΪ·Ç³£Ð¡µÄÊýÖµ¡£ ÏÂÃæ¶Ôʽ(3.30)¶¨ÒåµÄÙ¤Âíª²¸ß˹ģÐͽøÐзÖÎö¡£ÓÃʽ(3.29)¶Ôʽ(3.30)Öеij¬²ÎÊý¦Á½øÐбßÔµ»¯£¬Ôò¿ÉµÃµ½Ï¡ÊèÐźÅsµÄÒþº¬ÏÈÑ飺 psa,b=¡Òps¦Áp¦Áa,bd¦Á ¡Ø¡ÇNi=1b+s2i2-(a+0.5)(3.31) ʵ¼ÊÉÏ,psa,bÓëStudentª²T·Ö²¼³ÉÕý±È¡£Èô´ËÏÈÑé²ÎÊýaºÍbÇ÷½üÓÚÁ㣬ÄÇôʽ(3.31)¿ÉÒÔ¼ò»¯Îª ps¡Ø¡ÇNi=11si(3.32) Ò²¾ÍÊÇ˵£¬Ê½(3.32)ʵ¼ÊÉÏÃèÊöÁËÒ»¸öÏ¡ÊèÏÈÑé¸ÅÂÊ£Û27ª²28£Ý¡£ ÓÉÓÚÔÚѹËõ¸ÐÖªÖеIJâÁ¿Öµ»á±»ÔëÉùÎÛȾ£¬Òò´ËÐèÒªÔڴ˲âÁ¿¹ý³ÌÖÐÉ趨һ¸ö²âÁ¿ÔëÉù²ÎÊý¦Á0£¬Ëüʵ¼ÊÉÏΪÔëÉù·½²î¦Ò0µÄµ¹ÊýͬʱҲ·þ´ÓÙ¤Âí·Ö²¼£º p¦Á0c,d¡Ø¦Ác-10e-d¦Á0 ÓÖÒòΪ¸ßË¹ËÆÈ»·Ö²¼ÓëÉÏʽ¶¨ÒåµÄÙ¤Âí·Ö²¼¹ØÓÚ²âÁ¿ÔëÉù²ÎÊý¦Á0¹²éÔò¹ØÓÚ¦Á0µÄºóÑé¸ÅÂÊ·Ö²¼¿ÉÒԺܷ½±ãµØ»ñµÃ¡£È»ºó,¿ÉÒÔʹÓñä·Ö±´Ò¶Ë¹(VB)£Û28£ÝÍÆÀí»òÕßÏà¹ØÏòÁ¿»ú£Û27£Ý¹À¼Æ³ö¦Á0µÄ½üËÆÖµ¡£Ôڴ˹ý³ÌÖУ¬Æ½ºâ²ÎÊý¦Ë²»ÐèÒªÌáǰÉèÖöøÆä¿ÉÒÔ×Ô¶¯µØ¸üС£Òò´Ë£¬Ó봫ͳµÄÀûÓÃ×î´óºóÑé¹À¼Æ(MAP)À´½øÐÐÏ¡ÊèÇó½âµÄËã·¨Ïà±È,ÕâÖֱȽÏÖÇÄܵÄËã·¨ÔÚʵ¼ÊµÄÓ¦ÓÃÖоßÓиü´óµÄÓÅÊÆ¡£ ÁíÍ⣬ҲÄÜÒÔÏÂÃæÕâÖÖ·½Ê½À´Çó½â¸Õ²ÅÌáµ½µÄ±´Ò¶Ë¹Ñ¹Ëõ¸Ð֪ģÐ͵Ĵú¼Ûº¯Êý£º py¦Á0,¦Á=¡Òpys,¦Á0ps¦Áds ¡ØN(0,¦²0)(3.33) Ò²¾ÍÊÇ˵£¬´Ë´ú¼Ûº¯ÊýÊÇÓɱßÔµËÆÈ»·Ö²¼µÄ»ý·ÖÇóµÃ¡£ÆäÖУ¬Á0=¦Á-10I+ABAT²¢ÇÒB¦¤diag¦Á£¬Ôò´ú¼Ûº¯Êý¿ÉÒÔдΪ L=In¦²0+yT¦²-10y(3.34) ÉÏʽÓÉÁ½Ïî×é³É£¬ºÜÃ÷ÏÔµÚÒ»ÏîµÄ×÷ÓÃÊǽøÐÐÏ¡ÊèÔ¼Êø£¬¶øµÚ¶þÏîÔòÊÇÆðµ½¹Û²âÔ¼ÊøµÄ×÷ÓᣠËäÈ»ÔÚ¸Õ²ÅÌÖÂ۵ı´Ò¶Ë¹Ñ¹Ëõ¸ÐÖªÖУ¬½ö½öÖ»¶ÔÐźŵÄÏ¡ÊèÐÔ½øÐÐÁËÔ¼Êø,¶ø²¢Ã»ÓжÔÐÅºÅµÄÆäËû¸½¼Ó½á¹¹ÐÅÏ¢¼ÓÒÔ¿¼ÂÇ£¬µ«ÊÇÖµµÃ×¢ÒâµÄÊÇ£¬ÓÉÓڷֲ㱴Ҷ˹ģÐ͵ÄÒýÈ룬ѹËõ¸ÐÖª»Ö¸´Ëã·¨µÄ·Ç²ÎÊý»¯ÒѳÉΪ¿ÉÄÜ¡£Òò´Ë£¬ÎÒÃǾͿÉÒÔÔÚÕâ¸öÄ£Ð͵Ļù´¡ÉÏͨ¹ý¼ÓÈëÐźžßÓÐµÄÆäËû¸½¼Ó½á¹¹ÐÅÏ¢À´¸ü½øÒ»²½Ìá¸ß·Ç²ÎÊý»Ö¸´Ëã·¨ÐÔÄÜ¡£ 2. ¿éÏ¡ÊèÐźŵÄÏÈÑé¸ÅÂÊÄ£ÐÍ 1£© ¿éÏ¡Êè Ï¡Êè±í´ïÔÚ½üЩÄêÀ´µÃµ½Á˳ä·ÖµÄ¹Ø×¢¡£ÔÚѹËõ¸ÐÖª»·¾³Ï£¬ÐźŵÄÏ¡ÊèÏÈÑéÊÇÐźŴÓÉÙÁ¿²âÁ¿ÖµÖаÑԭʼÐźŽøÐÐΨһ»Ö¸´µÄ±£Ö¤Ìõ¼þ¡£Ôںܶàʵ¼ÊµÄÐźÅÖУ¬Ï¡ÊèÐÔÖ»ÊÇÆäÖÐÒ»¸öÌØÐÔ£¬ÆäÍùÍù»¹ÓµÓÐÆäËû½á¹¹ÌØÐÔ¡£ÆäÖÐÒ»ÖÖ¼òµ¥²¢ÇÒºÜÖØÒªµÄÐźű»³ÆÎª¿éÏ¡ÊèÐźÅ,ÆäÌØµãÊÇËüµÄ·ÇÁãÔªËØÊÇÒÔ¿éÐÎʽ³öÏֵ쬶ø²»ÊÇÒÔËæ»úÀ©É¢µÄÐÎʽ³öÏֵġ£ÕâÀàÐźÅÒ²³£¼ûÓÚ¶àÆµ´øÐźÅÒÔ¼°¶àÖØ²âÁ¿ÏòÁ¿(MMV)ÎÊÌâ¡£ ÕâÖֹ㷺±»Ñо¿µÄ¿éÏ¡ÊèÐźſÉÒÔ±íʾÈçÏ£º x= £Ûx1,x2,¡­,xd1xT1,¡­,xdg-1+1,¡­,xdgxTg£ÝT ÆäÖÐd1,d2,¡­,dg²»Ò»¶¨Ïàͬ¡£ ÔÚÈ«²¿µÄÕâЩ¿éÖУ¬Ö»ÓкÜÉٵĿéΪ·ÇÁã¿é£¬µ«ÊÇËüÃǵľßÌåλÖÃδ֪¡£Í¼3.6¸ø³öÁ˼¸¸öµäÐ͵ĿéÏ¡ÊèÐźÅÀý×Ó£¬ÆäÖÐͼ3.6(a)±íʾµÄÊÇÔÚ¸ÐÖªÎÞÏߵ糡¾°Öо­³£¼ûµ½µÄ¶àƵ´øÐźŵķù¶ÈÆ×£¬¿ÉÒÔ¿´³öÔÚÆäÆµ´øÖУ¬Ö»ÓÐÎå¸öÕ­´øÐźŵķù¶ÈÆ×²»ÎªÁ㣬¶øÆäËûƵ´øµÄ·ù¶ÈÆ×¶¼ÎªÁ㣬ÕâÓë¿éÏ¡ÊèÐźŵ͍ÒåºÜÏà·û£» ͼ3.6(b)±íʾµÄÊÇһЩ»Ò¶ÈͼÏñÖг£³öÏÖµÄ×Öĸͼ£¬ºÜÃ÷ÏÔÔÚ»Ò¶ÈͼÏñµÄÖмäÖ»Óдóд×ÖĸH´ú±íµÄ»Ò¶ÈֵΪ·ÇÁã,¶øÆäËûÏñËØµãµÄ»Ò¶ÈÖµ¶¼ÎªÁ㣬ÕâÒ²Óë¿éÏ¡ÊèÐźŵ͍ÒåÏà·ûºÏ¡£ ͼ3.6¿éÏ¡ÊèÐźŠ2£© ÏÈÑé¸ÅÂÊÄ£ÐÍ ¼ÇÎÒÃǸÐÐËȤµÄÄ£ÄâÐźÅΪx(t)£¬²¢ÇÒ0¡Üt¡ÜT¡£¼ÙÉèËüÊÇÓÉÓÐÏÞ¶à¸ö»ùº¯Êý(ÀýÈ磬¸µÀïÒ¶»ù)¦×i(t)µÄÈ¨ÖØºÍ×é³É£¬Ôò¿É±íʾÈçÏ£º x(t)=¡ÆNi=1si¦×i(t)(3.35) ¼ÙÉè´ËÐźÅx(t)¾ßÓÐÏ¡ÊèÌØÐÔ£¬Ôò´ó²¿·ÖµÄ»ùº¯ÊýµÄϵÊýsiΪÁã¡£ÔÚÀëɢʱ¼äѹËõ¸ÐÖªÀíÂÛ¿ò¼ÜÏ£¬Ê½(3.35)¿ÉÒÔдΪx=¦×s£¬ÆäÖдóСΪN¡Á1µÄÏòÁ¿x±»µ±×÷ÊÇÄ£ÄâÐźÅx(t)µÄÄοüË¹ÌØËÙÂÊÐźţ¬¶ø¦×=¦×1,¦×2,¡­,¦×NTΪһ¸öN¡ÁN µÄÏ¡Êè±í´ï¾ØÕó£¬s=s1,s2,¡­,sNT±íʾµÄÊÇÒ»¸ö´óСΪN¡Á1µÄÏ¡Êè±í´ïϵÊýÏòÁ¿¡£Ò²¾ÍÊÇ˵£¬ÔÚËùÓеÄÏ¡ÊèϵÊýÏòÁ¿ÖУ¬ÆäÖÐÖ»ÓÐk¸öÔªËØÎª·ÇÁãÖµ£¬²¢ÇÒ kªîN¡£ÔÚÎÄÏ×£Û29£ÝºÍ£Û30£ÝÖÐÒÑÖ¤Ã÷£¬Èç¹ûÏ¡Êè±í´ï¾ØÕó¦×Óë³ß´çΪM¡ÁNµÄѹËõ¸ÐÖª²ÉÑù¾ØÕóA³ä·Ö²»Ïà¹Ø£¬Ôò¿ÉÒÔ´ÓM=kOlogN/k¸ö·ÇÏßÐÔ²âÁ¿Öо«È·µØ»Ö¸´Ï¡ÊèÐźÅx(t)¡£±»¹ã·ºÊ¹ÓõĵäÐ͵IJÉÑù¾ØÕóAµÄÿ¸öÔªËØ¶ÀÁ¢µØÈ¡×ÔËæ»ú¸ß˹·Ö²¼¡£¸ù¾ÝѹËõ¸ÐÖªÀíÂÛ,¿ÉÒÔд³öÈçϹØÓÚ²âÁ¿ÏòÁ¿µÄ±í´ïʽ£º y=Ax=A¦·s=¦¨s(3.36) ÆäÖУ¬¦·¿ÉÒÔΪһ¸öN¡ÁNµÄÀëÉ¢¸µÀïÒ¶±ä»»(DFT)¾ØÕ󣬯ä¿ÉÒ԰ѸÐÐËȤÐźŴÓʱÓòÓ³É䵽ƵÓòÖÐÀ´£¬¶ø¾ØÕó¦¨=A¦·ÎªÒ»¸ö´óСΪM¡ÁN¸ÐÖª¾ØÕó¡£ÎªÁË´Ó²âÁ¿ÖµyÖеõ½ÐźŵĻָ´Á¿s^£¬Ôòʽ(3.36)µÄÄæ¹ý³Ì¿É±»ÊÓΪÇó½âÒÔÏÂL1·¶Êý×îÓÅ»¯ÎÊÌ⣺ s^=arg min¡¬s¡¬1s.t.y=¦¨s(3.37) Òò´Ë£¬ºÜ¶àÏֳɵÄËã·¨¶¼¿ÉÒÔÓÃÀ´Çó½â´Ëʽ£¬ÀýÈ磬ÊôÓÚÏßÐԹ滮·½·¨µÄ»ù×·×Ù(BP)Ëã·¨£Û20£Ý£¬ÓÖÀýÈçÊôÓÚµü´ṵ́À·Ëã·¨µÄÕý½»Æ¥Åä×·×Ù(OMP)Ëã·¨£Û31£Ý¡¢ ÕýÔò»¯µÄÕý½»Æ¥Åä×·×Ù(ROMP£Û32£Ý)Ëã·¨ÒÔ¼°Ñ¹Ëõ²ÉÑùÆ¥Åä×·×Ù(CoSaMP£Û33£Ý)Ëã·¨¡£µ«ÊÇ£¬ÕâЩ´«Í³µÄ¾­µäËã·¨¶¼Ö»ÊÇ»ùÓÚÐźŵÄÏ¡ÊèÐÔ±»Ìá³öµÄ¡£ÏÂÃæ½«×¢ÒâÁ¦¼¯ÖÐÔÚ¿éÏ¡ÊèÐźŵĻָ´ÉÏ£¬ÎÒÃÇÌá³öÒ»ÖÖ»ùÓÚË«²ã¶þ²æÊ÷Ä£µÄ¿éÏ¡ÊèÐźŻָ´Ëã·¨£¬´ËËã·¨ÊÇ»ùÓÚ±´Ò¶Ë¹Ñ¹Ëõ¸ÐÖªÀíÂÛ¿ò¼ÜÌá³öµÄ¡£Ê×ÏÈÀ´¿´Ò»Ï¶ԿéÏ¡ÊèÐźŵÄÏ¡ÊèÏÈÑéµÄÃèÊö¡£ ¶ÔÓÚ¸ÐÐËȤ¿éÏ¡ÊèÐźŵÄÏ¡ÊèÐÔ£¬¿ÉÒÔÀûÓÃÒ»¸öspikeª²andª²slabÏÈÑéÄ£ÐÍ£¨Ò²±»³ÆÎªÕ­¸ß˹·Ö²¼Óë¿í¸ß˹·Ö²¼µÄ»ìºÏÄ£ÐÍ£©¶ÔÆäÏ¡ÊèÐÔ½øÐн¨Ä£¡£¼ÙÉè¿éÏ¡ÊèÐźÅÖеÄÿһ¸öÔªËØsi¶¼·þ´Ó´Ëspikeª²andª²slabÏÈÑéÄ£ÐÍ£¬Ôò¿ÉÒÔ½«´ËÄ£ÐͱíʾÈçÏ£º si¡«(1-¦Ði)¦Ä0+¦ÐiN(0,¦Á-1i)(3.38) ºÜÃ÷ÏÔ£¬ÎÒÃǹ¹½¨µÄ´ËÏÈÑéÄ£ÐÍÓÉÁ½²¿·Ö×é³É¡£ÔÚµÚÒ»²¿·ÖÀ·ûºÅ¦Ä0±íʾµÄÊÇ´¦ÓÚÁãλÖõĵã·Ö²¼£¬ËüµÄ×÷ÓÃÊǶÔsÖеÄÁãϵÊý½øÐÐÃèÊö¡£ÔÚµÚ¶þ²¿·ÖÀ·ûºÅN(0,¦Á-1i)±íʾµÄÊÇÒ»¸öÁã¾ùÖµ¸ß˹·Ö²¼(¦ÁiΪ¸ß˹·Ö²¼µÄ¾«¶È²ÎÊý)£¬ËüµÄ×÷ÓÃÊǶÔsÖеķÇÁãϵÊý½øÐÐÃèÊö¡£¶øÔÚʽ(3.38)µÄÁ½¸ö²¿·ÖÖж¼´æÔڵĻìºÏÈ¨ÖØ²ÎÊý¦ÐiÊÇÒ»¸ö±êÁ¿£¬Æäȡֵ·¶Î§Îª£Û0,1£Ý¡£×Ðϸ¹Û²ìʽ(3.38)µÄÁ½¸ö²¿·Ö¿ÉÒÔ·¢ÏÖ£¬Êµ¼ÊÉÏ»ìºÏÈ¨ÖØ²ÎÊý¦Ði±íʾµÄÊÇÐźÅÖеĵÚi¸öÔªËØsi¿ÉÄÜΪ·ÇÁã״̬µÄ¸ÅÂÊ¡£Ò²¾ÍÊÇ˵£¬µ±»ìºÏÈ¨ÖØ²ÎÊý¦ÐiÈ¡½Ï´óµÄֵʱ(ÀýÈ磬½Ó½üÓÚ1)£¬¾Í»áÒԽϴóµÄ¸ÅÂʵõ½Ò»¸öȡֵΪ·ÇÁãµÄϵÊýsi£» Ïà·´£¬µ±»ìºÏÈ¨ÖØ²ÎÊý¦ÐiÈ¡½ÏСµÄֵʱ(ÀýÈ磬½Ó½üÓÚ0)£¬¾Í»áÒԽϴóµÄ¸ÅÂʵõ½Ò»¸öȡֵΪÁãµÄϵÊýsi¡£ÁíÍ⣬ÎÒÃÇÀûÓ÷ֲãµÄÏÈÑéÀ´µÃµ½ÏÔʾºóÑé¸ÅÂÊÃܶȣ¬¼´É趨¾«²ÎÊý¦ÁiÂú×ãÏÂÃæµÄÌõ¼þ£º ¦Ái¡«Gammaa,b ʵ¼ÊÉÏ£¬ÕâÖÖÏ¡ÊèÏÈÑé¾ÍÊÇ·Ö²ãµÄ¸ß˹ª²Ù¤ÂíÏÈÑéÄ£ÐÍ¡£ 3£© Ë«²ã¶þ²æÊ÷½á¹¹ ÈçǰËùÊö£¬ÀûÓø½¼ÓµÄ½á¹¹ÐÅÏ¢¿ÉÒÔÌá¸ßÏ¡ÊèÐźŻָ´Ëã·¨µÄÐÔÄÜ¡£Ò²¾ÍÊÇ˵£¬ÎÒÃÇ¿ÉÒÔÀûÓÃÏ¡ÊèϵÊýsiÖ®¼äµÄ¹ØÏµÀ´Ìá¸ß»Ö¸´¾«¶È²¢½ÚÔ¼»Ö¸´Ê±¼ä¡£¶ÔÓÚ¿éÏ¡ÊèÐźÅÀ´Ëµ£¬Æä·ÇÁãϵÊýÍùÍù»á¾Û¼¯ÔÚÒ»ÆðÐγÉÒ»¸ö»òÈô¸É¸ö·ÇÁã¿é£» ¶øÆäÁãϵÊýÒ²ÍùÍù¾Û¼¯ÔÚÒ»ÆðÐγÉÒ»¸ö»òÈô¸É¸öÁã¿é¡£ÀàËÆµØ£¬Ä³¸ö·ÇÁãϵÊýµÄ(Ò»½×)ÁÚÓòϵÊý³£³£Ò²Îª·ÇÁ㣻 ¶øÄ³¸öÁãϵÊýµÄ(Ò»½×)ÁÚÓòϵÊý³£³£Ò²ÎªÁã¡£»ùÓÚÒÔÉÏÊÂʵ£¬ÎÒÃÇÌá³öÁËÒ»ÖÖË«²ã¶þ²æÊ÷½á¹¹À´ÃèÊöϵÊýÓëÆäÁìÓòÖ®¼äµÄ¡°ÒÅ´«¡±ÌØÐÔ¡£ÔÚÎÒÃÇÌá³öµÄË«²ã¶þ²æÊ÷½á¹¹Ä£ÐÍÖУ¬¿éÏ¡ÊèÐźŵÄÿÈý¸öÁ¬Ðø²»ÖصþµÄϵÊý±»µ±×÷Ò»¸öË«²ã¶þ²æÊ÷½á¹¹(DBT)ssubi£¬²¢ÇÒÿһ¸össubiÓÉÒ»¸ö¸ù½ÚµãRiºÍÁ½¸öÒ¶×Ó½ÚµãLi1ºÍLi2×é³É£¬Èçͼ3.7ÖеÄÐéÏß¿òËùʾ¡£Òò´Ë£¬¿éÏ¡ÊèÐźŵÄÈ«²¿ÏµÊý½«»áÐγÉÒ»Á¬´®µÄÈçͼ3.7µÄË«²ã¶þ²æÊ÷£¬²¢ÇÒÆä¿ÉÒÔ±»ÃèÊöΪs=L11,R1,L12ssub1,¡­,Li1,Ri,Li2ssubi,¡­£¬Lk1,Rk,Lk2ssubkT¡£ ͼ3.7Ë«²ã¶þ²æÊ÷Ä£ÐÍ ÓÚÊÇ£¬¾Í¿ÉÒÔÔÚ±´Ò¶Ë¹Ñ¹Ëõ¸ÐÖªµÄ¿ò¼ÜϼÓÈëËùÌá³öDBTÄ£ÐÍÀ´Ìá¸ß»Ö¸´Ëã·¨µÄÐÔÄÜ¡£ ¼ÙÉ覸=1,2,¡­,NΪ¿éÏ¡ÊèÐźÅϵÊýsµÄÿһ¸öÔªËØµÄλÖü¯ºÏ¡£²¢ÇÒ¶¨Òå ¦¸R=3¡Áj-1,j¡Ê1,kºÍ¦¸L=3¡Áj-2,3¡Áj,j¡Ê1,k·Ö±ðΪDBTµÄ¸ù½ÚµãÒÔ¼°Ò¶×ӽڵ㡣Òò´Ë£¬ºÜÃ÷ÏÔ¦¸R¡È¦¸L=¦¸²¢ÇÒ¦¸R¡É¦¸L=«Á¡£Ò²¾ÍÊÇ˵£¬ÔÚÎÒÃÇÌá³öµÄÕâÖÖDBT½á¹¹ÖÐsµÄ³¤¶ÈNÐèÒªÂú×ãÌõ¼þmodN,3=0¡£µ«ÊÇÔÚʵ¼ÊÓ¦ÓÃÖУ¬µ±modN,3=1ʱ£¬ÎÒÃÇ¿ÉÒÔ¶¨ÒåÓësÏà¶ÔÓ¦µÄ×îºóÒ»¸öDBTÖ»¾ßÓиù½Úµã£» ¶øµ±modN,3=2ʱ£¬ÎÒÃÇ¿ÉÒÔ¶¨ÒåÓësÏà¶ÔÓ¦µÄ×îºóÒ»¸öDBT²»½ö¾ßÓиù½Úµã£¬¶øÇÒ¾ßÓÐÒ»¸öÒ¶×ӽڵ㡣ʵ¼ÊÉÏ£¬ÕâÖÖ²¹³äÐԵ͍Òå¶ÔÎÒÃÇÌá³öµÄDBT½á¹¹µÄÕûÌåÊÊÓÃÐÔûÓÐÈκÎÓ°Ïì¡£ÔÚͼ3.7ÖУ¬Ri´ú±í×ܵÄk¸öDBTµÄµÚi¸öDBTµÄ¸ù½Úµã£» ¶øLi1ºÍLi2·Ö±ð±íʾµÚi¸öDBTµÄ¸ù½ÚµãµÄ×óÒ¶×Ó½ÚµãºÍÓÒÒ¶×ӽڵ㡣¸ù¾ÝÕâÖֽṹģÐÍ£¬sµÄÿÈý¸öÔªËØ(²»Öصþ)±»ÊÓ×÷siµÄÒ»¸ö×Ó¼¯ssubi£¬²¢ÇÒÕâ¸ö×Ó¼¯µÄÖмäλÖñ»¶¨ÒåΪDBTµÄ¸ù½Úµã¶øÆäËûÁ½¸öλÖñ»¶¨ÒåΪDBTµÄÒ¶×ӽڵ㡣ÕýÈçͼ3.5Ëùʾ£¬sµÄËùÓÐÔªËØ¿ÉÒÔ±»·Ö³ÉÈçÏÂÁ½²ã£º L1¡«sR={Ri|i¡Ê£Û1,k£Ý} L2¡«sL={Li1,Li2|i¡Ê£Û1,k£Ý}(3.39) ÔÚʽ(3.39)ÖУ¬sR´¦ÔÚµÚÒ»²ã£¬Ëü°üº¬ÁËËùÓеĸù½Úµã£» sL´¦ÔÚµÚ¶þ²ã£¬Ëü°üº¬ÁËËùÓеÄÒ¶×ӽڵ㡣Òò´Ë£¬ÎÒÃǰÑÒ»¸ö¸ù½Úµãs3i-1ÓëÆäÁ½¸öÒ¶×ӽڵ㶨ÒåΪϵÊýsµÄÒ»¸ö×Ó¼¯£º ssubi={Li1,Ri,Li21¡Üi¡Ük}(3.40) ÏÖÔڿɰÑÿһ¸ö×Ó¼¯Öеĸù½Úµã·ÖΪÁ½ÖÖÀàÐÍ£º type(1)={Ri¡Ù0,i¡Ê£Û1,k£Ý} type(2)={Ri=0,i¡Ê£Û1,k£Ý} ÄÇô¸ù¾Ý²»Í¬µÄ¾Û¼¯Ä£ÐÍ£¬Ôò»ìºÏÈ¨ÖØ²ÎÊý¦Ði¿ÉÒÔ¸ù¾ÝÒÔϵÄÄ£ÐÍÑ¡Ôñ¹ý³Ì½øÐÐÑ¡Ôñ£º ¦Ð0r,si´¦ÔÚµÚÒ»²ã ¦Ð1i,si´¦ÔÚµÚ¶þ²ã£¬¸ù½ÚµãΪtype£¨1£©ÐÍ ¦Ð2i,si´¦ÔÚµÚ¶þ²ã£¬¸ù½ÚµãΪtype£¨2£©ÐÍ(3.41) µÚÒ»²ãµÄϵÊý£¬ÓÉÒ»¸öÏÈÑé²ÎÊý¦Ð0rÉ趨£¬ËüÊÇÒ»¸öÇ÷ÏòÓÚ²úÉú(½Ó½üÓÚ1)·ÇÁãÖµµÄÏÈÑé¡£Èç¹ûÏÈÑé²ÎÊýÔª¦Ð1i(ÒԽϴó¸ÅÂÊÈ¡½Ï´óÖµ)±»Ñ¡Ôñ£¬ÔòÒâζ×ÅÈô¸ù½ÚµãÇ÷½üÓÚ(½Ï´óÖµ)·ÇÁ㣬ÄÇô´Ë¸ù½ÚµãµÄÁ½¸öÒ¶×Ó½ÚµãÒ²»áÒԸ߸ÅÂÊÇ÷½üÓÚ(½Ï´óÖµ)·ÇÁã¡£Èç¹ûÏÈÑé²ÎÊý¦Ð2i(ÒԽϴó¸ÅÂÊÈ¡½ÏСֵ)±»Ñ¡Ôñ£¬ÔòÒâζ×ÅÈô¸ù½ÚµãÇ÷½üÓÚÁ㣬ÄÇô´Ë¸ù½ÚµãµÄÁ½¸öÒ¶×Ó½ÚµãÒ²»áÒԸ߸ÅÂÊÇ÷½üÓÚÁã¡£Ò²¾ÍÊÇ˵£¬ÔÚÕâ¸öģʽµÄÑ¡Ôñ¹ý³ÌÖÐDBTµÄÒ¶×Ó½ÚµãÓëËüµÄ¸ù½ÚµãÓÐÒ»ÖÖ±¾ÖʵÄÒÅ´«¹ØÏµ¡£ÄÇôÔÚ¿éÏ¡ÊèÐźŵĻָ´¹ý³ÌÖУ¬´ËÄ£ÐÍ¿ÉÒÔʹÿһ¸öDBT½øÐÐÏàÓ¦µÄ¿é¾Û¼¯£¬Ò²¿ÉÒÔÀí½âΪÔÚÐźŻָ´Ê±¸ø¿éѰÕҵĹý³ÌÌí¼ÓÁËÒ»¸öÈõÔ¼Êø¡£ ÓÉÓÚBeta·Ö²¼ÊDz®Å¬ÀûËÆÈ»µÄ¹²éîÏÈÑ飬Ôòʽ(3.41)ÖеĻìºÏÈ¨ÖØ¦Ði¿ÉÒÔ´ÓÈçÏÂBeta·Ö²¼µÃµ½£º ¦Ð0r¡«Betae0,f0 ¦Ð1i¡«Betae1,f1 ¦Ð2i¡«Betae2,f2 ÆäÖÐe0,f0¡¢e1,f1ÒÔ¼°e2,f2ΪBeta·Ö²¼µÄÐÎ×´²ÎÊý¡£Èô¶ÔÕâЩ²ÎÊý½øÐкÏÊʵÄÉèÖã¬ÔòÒÔÉÏģʽѡÔñ¹ý³Ì²»½ö¿ÉÒÔÌá¸ß¿éµÄ¾Û¼¯ÐÔ£¬¶øÇÒ¿ÉÒÔÆðµ½ÒÖÖÆ¹ÂÁ¢µãµÄ×÷Óá£ÀýÈ磬µ±efʱ£¬ÆäÇãÏòÓÚ²úÉúÒ»¸ö(½Ï´ó)·ÇÁãµÄ²ÉÑùÖµ¡£Òò´Ë£¬ÎªÁ˼ÓÇ¿¿éµÄ¾Û¼¯ÐÔ²¢ÒÖÖÆ¹ÂÁ¢µãµÄ³öÏÖ£¬¶ÔÓÚ²ÎÊýe1,f1ÒªÉèÖÃe1>f1ÒÔʹBetae1,f1·Ö²¼²úÉúÒ»¸ö½Ï´óµÄ¸ÅÂʦÐ1iÀ´´Ù½ø¿é¾Û¼¯£» ¶ÔÓÚ²ÎÊýe2,f2ÒªÉèÖÃe2¦Å¡¬yj¡¬0(¦ÅΪ²Ð²îãÐÖµ)ʱ£¬t=t+1£¬·µ»Ø²½Ö裨2£©£¬·ñÔòÖ´Ðв½Ö裨6£©¡£ £¨6£© ½âÕý½»»¯£¬ÔËÓÃQR·Ö½â˼Ï룬¦£j=£Û¦Ãj,1,¦Ãj,2,¡­,¦Ãj,M£ÝÓ릵jÂú×ã¹ØÏµ¦µj,¦¸=¦£jRj£¬ÆäÖЦµj,¦¸=£Û¦Õj,n1,¦Õj,n2,¡­,¦Õj,nM£Ý¬®yj=¦£j¦Âj=¦µj,¦¸xj,¦¸=¦£jRjxj,¦¸£¬µÃµ½»Ö¸´ÐźŠx^j,¦¸=R-1j¦Âj 3.3.3JSMª²3Ä£Ðͼ°Öع¹Ëã·¨ 1. JSMª²3Ä£Ðͼò½é JSMª²3Ä£ÐÍÖÐÐźÅÓɹ«¹²²¿·ÖºÍÌØÓв¿·Ö×é³É¡£ºÍJSMª²1µÄÇø±ðÔÚÓÚ£¬ÐźŵĹ«¹²²¿·Ö²»Ï¡Ê裬¼´ÔÚÈκλù϶¼²»ÄÜÏ¡Êè±íʾ¡£JSMª²3¿ÉÒÔ¿´×÷JSMª²1µÄÒ»ÖÖÀ©Õ¹£¬½µµÍÁËJSMª²1ÐźŶԹ«¹²²¿·ÖҲҪϡÊè±íʾµÄÑϸñÒªÇó¡£JSMª²3ÐźŵÄÊýѧģÐÍÈçÏ£º xj=zc+zj(3.53) zj=¦·sj(3.54) JSMª²3µÄÌØÓÐÏ¡ÊèϵÊýÏòÁ¿ºÍJSMª²1ÌØÓв¿·ÖµÄÏ¡ÊèϵÊýÏòÁ¿ÀàËÆ£¬¼´Ï¡ÊèϵÊýµÄλÖûò´óС²»Í¬¡£ 2. JSMª²3ѹËõ¸ÐÖªÖØ½¨Ëã·¨ ÓëJSMª²1¡¢JSMª²2²»Í¬µÄÊÇ£¬JSMª²3ÐźÅÊÇ·ÇÏ¡ÊèµÄ£¬²»ÄÜÓô«Í³µÄCSËã·¨½øÐÐÖØ¹¹¡£ÏÂÃæ½éÉÜÒ»ÖÖÄܹ»¶ÔJSMª²3ʵÏÖÁªºÏÖØ¹¹µÄËã·¨£¬»ùÓÚ±ßÐÅÏ¢µÄTexas DOIËã·¨£¬ÐèҪעÒâµÄÊÇ£¬Õë¶ÔJSMª²1Ìá³öµÄÖØ¹¹Ëã·¨SiOMP¿ÉÒÔÓõ½JSMª²3µÄÖØ¹¹ÖУ¬µ«´ËʱËùÐèµÄ±ßÐÅÏ¢²»ÄÜѹËõ»Ö¸´£¬ÇÒTexas DOIÒªÇóËùÓÐÐÅºÅµÄ¹Û²â¾ØÕóÒ»Ö¡£Texas DOIËã·¨Èç±í3.6Ëùʾ¡£ ±í3.6Texas DOIËã·¨²½Öè ÊäÈ룺 ¹Û²â¾ØÕ󦵣¬Ï¡Êè¾ØÕó¦·£¬ÐźŸöÊýJ£» £¨1£© ¹«¹²²¿·Ö¹Û²âÏòÁ¿µÄ½üËÆ¡¢±ßÐÅÏ¢ÌØÓв¿·Ö¹Û²âÏòÁ¿µÄ½üËÆ£¬¿ÉÒÔͨ¹ýÇóºÍ×ö²îµÃµ½ yc=1J¡ÆJj=1yj yI,1=y1-yc £¨2£© ÀûÓÃyI,1¡¢¦µ¡¢¦·µÈÐÅϢʹÓÃÏàÓ¦µÄËã·¨(OMP)ÖØ¹¹±ßÐÅÏ¢µÄÏ¡ÊèϵÊýÏòÁ¿sI,1£» £¨3£© ÒÀ´Î»Ö¸´ÆäËûÐźţº ydiff,j=yj-y1 yI,j=ydiff,j+yI,1 ÀûÓÃyI,j¡¢¦µ¡¢¦·µÈÐÅÏ¢»Ö¸´ÆäËûÐźŵĽüËÆÏ¡ÊèϵÊýÏòÁ¿sI,j¡£Ê¹ÓÃsJ=s1-sI,1+sI»Ö¸´ÆäËûÐźŵÄÍêÕûϵÊý¡£ 3.4¸ß˹ÁªºÏÏ¡ÊèÕÅÁ¿Ñ¹Ëõ¸ÐÖª ±¾½Ú֮ǰµÄ²¿·Ö½éÉܵÄÐźŶ¼ÊÇÒÔһάÏòÁ¿»ò¶þά¾ØÕóµÄÐÎʽ´æÔڵ쬵±Éæ¼°²ÊɫͼƬ¡¢ÊÓÆµÐòÁС¢Ò½Ñ§³ÉÏñÒÔ¼°¸ß¹âÆ×ͼÏñµÈÈýάÉõÖÁ¶àάÐźÅʱ£¬Èç¹û°´ÕÕ´«Í³µÄѹËõ¸ÐÖªÀíÂÛ¶ÔһάµÄÏòÁ¿½øÐвÙ×÷£¬ÄÇôÆäÒ»°ãµÄ×ö·¨ÊÇÏȶÔԭʼÊý¾Ý½øÐÐÏòÁ¿»¯²Ù×÷£¬È»¶øÕâÖÖ·½·¨²»½öÆÆ»µÁËÊý¾Ý×ÔÉíµÄÏà¹ØÐÔ£¬ÀË·ÑÁ˱¾¾Í¼«ÆäÏ¡ÉÙµÄÐÅÏ¢£¬¶øÇÒ¼«´óµØÔö¼ÓÁËËã·¨µÄʱ¼ä¸´ÔӶȺͿռ临ÔÓ¶È¡£ÀýÈ磬¶ÔÓÚÒ»¸ö100¡Á100¡Á100ÏñËØµÄ¸ß¹âÆ×ͼÏñ£¬Èô²ÉÓô«Í³µÄѹËõ¸ÐÖª·½·¨£¬Ëã·¨µÄ¸´ÔÓ¶ÈÖÁÉÙΪO(106)£¬¶ø¸ß¹âÆ×ͼÏñ±¾Éí¾ßÓеĿռäºÍÆ×¼ä¼«Ç¿µÄÏà¹ØÐÔÒ²²»¸´´æÔÚ¡£Òò´Ë£¬Ì½Ë÷еÄѹËõ¸ÐÖªµÄÄ£Ð;ßÓÐÖØÒªÒâÒ壬¶øÕÅÁ¿µÄ·½·¨Îª´ËÌṩÁËÒ»ÖÖ¿ÉÐеķ½·¨¡£ÕÅÁ¿Ñ¹Ëõ¸ÐÖªÓйػù±¾ÀíÂÛÔÚ2.6½ÚÒѽéÉܹý¡£±¾½ÚÒÔÊÓÆµÊý¾ÝΪÀý½éÉÜÁªºÏÏ¡ÊèÕÅÁ¿Ñ¹Ëõ¸ÐÖª¡£ 3.4.1ÕÅÁ¿±íʾ¼°Æä·Ö½â Ò»¸öÕÅÁ¿¿ÉÒÔ±»ÊÓΪһ¸ö¶àË÷ÒýÊýÖµÊý×飬һ¸öd½×ÕÅÁ¿±íʾΪA¡ÊRI1¡ÁI2¡Á¡­¡ÁId£¬¶ÔÓ¦ÔªËØ±íʾΪai1i2¡­in-1inin+1¡­id£¬ÆäÖÐ1¡Üin¡ÜIn£¬10 ÆäÖÐ,c1=|x|-¦Å£¬c2=c12-4(b-¦Å|x|)¡£ £¨2£© ¹Ì¶¨ÆäËû²ÎÊý£¬¸üÐÂUjj=1,2,3£º U+j=BjCTj ÆäÖÐA+j=BjDCTjÊÇAjµÄSVD·Ö½â¡£µ±j=1ʱ£¬A1=(O(1)unfold1(S¡Á2U2¡Á3U3))¡£ £¨3£© ¹Ì¶¨ÆäËû²ÎÊý£¬¸üÐÂMjj=1,2,3£º minMjajP*ls(Mj(j))+12¡¬L+1¦ÌPj-Mj¡¬2F ÆäÖÐaj=¦Ë¦Ì¡Çk¡ÙjP*ls(Mk(k))£¬L=S¡Á1U1¡Á2U2¡Á3U3¡£Mj¿ÉÒÔͨ¹ýÒÔϹ«Ê½¸üУº M+j= foldjV1¦²akVT2 Æä ÖÐ ¦²ak=diag£ÛDak,¦Å(¦Ò1),Dak,¦Å(¦Ò2),¡­,Dak,¦Å(¦Òn)£Ý£¬V1diag£Û¦Ò1,¦Ò2,¡­,¦Òn£ÝVT2Ϊunfoldj(L+Pj/¦Ì)µÄSVD·Ö½â¡£ £¨4£© ¸üгË×Ó£º ¦Ì+=¦Ñ¦Ì 2) ¹Ì¶¨Ï¡ÊèÕÅÁ¿Çó½âÊÓÆµÐòÁÐ ¹Ì¶¨ÉÏÊö¼ÆËã³öµÄLmi£¬¿ÉÒÔͨ¹ýÏÂÃæµÄ×ÓÓÅ»¯ÎÊÌâÇó½âÊÓÆµÐòÁÐx£º x= arg minx¡¬y-¦µx¡¬22+¦Ç¡Æm¡ÆDi=1¡¬Rmix-Lmi¡¬2F Æä¾ßÓбÕʽ½â£º x=¦µT¦µ+¦Ç¡Æm¡ÆDi=1RTmiRmi-1¦µTy+¦Ç¡Æm¡ÆDi=1RTmiLmi ÆäÖÐRTmiRmi=¡ÆRTmqiRmqi¡£ ÔÚÕâÀ¾ØÕóÌ«´óÒÔÖÁÓÚÎÞ·¨Ö±½ÓÇóÆäÄæ¾ØÕó£¬Òò´Ë²ÉÓ÷ֿéCSµÄ˼Ïë¶ÔÆä½øÐмò»¯Çó½â£Û44£Ý¡£Èçͼ3.13Ëùʾ£¬¸ÐÖª¾ØÕó¦µÊÇÒ»¸ö¿é¶Ô½Ç¾ØÕ󣬦µ=diag£Û¦µ1,¦µ2,¡­,¦µk,¡­,¦µK£Ý£¬ÆäÖÐ¶Ô½Ç¿é¾ØÕó¦µKµÄάÊýÈ¡¾öÓÚ¼ÆËã»úµÄ¼ÆËãÄÜÁ¦¡£LmiÊÇÓëxjmÏàËÆµÄͼÏñ¿é×éµÄÒ»¸öÏ¡ÊèÕÅÁ¿½üËÆ£¬ÒòΪÏàËÆÍ¼Ïñ¿éµÄË÷ÒýÒÑÖª£¬ËùÒÔ¿ÉÒÔͨ¹ýÔÚÿ¸öÏñËØ´¦¾ÛºÏLmiÀ´»ñµÃÕû¸öÊÓÆµµÄÏ¡ÊèÕÅÁ¿²¿·ÖL£¬¶ÔӦΪԭʼÊÓÆµÐòÁдóС¡£¿ÉÒÔ·Ö½âΪһϵÁжÀÁ¢µÄ×ÓÎÊÌ⣺ xk= arg minxk¡¬yk-¦µkxk¡¬22+¦Ç¡¬xk-Lk¡¬2F ÆäÖÐLk=Lmi(k)ÊÇ´ÓLÖÐÌáÈ¡µÄ¶ÔÓ¦ÈýάÊÓÆµ¿éxmλÖã¬xkºÍLk¾ù±»ÏòÁ¿»¯¡£¸Ã×ÓÎÊÌâºÜÈÝÒ×Çó½â£º xk=((¦µk)T¦µk+¦ÇI)-1((¦µk)Tyk+¦ÇLmi(k)) µ±Çó½âÍêËùÓÐÈýάÊÓÆµ¿éxk1¡Ük¡ÜK£¬¿ÉÒÔÖØÐ½«ÆäÕûºÏΪÕû¸öÊÓÆµÐòÁС£ »ùÓÚITSµÄÊÓÆµÖع¹¹ý³Ì¿É¼ûËã·¨3.7£¬¿ò¼Üͼ¼ûͼ3.13¡£ ±í3.7»ùÓÚITSµÄÊÓÆµÖع¹¹ý³Ì »ùÓÚITSµÄÊÓÆµÖع¹ ³õʼ»¯£º ²½Öè1,¹À¼Æ³õʼÊÓÆµÐòÁÐx^ ²½Öè2,ÉèÖòÎÊý¦Ë£¬¦Ç£¬Q Ñ­»·£º Foriter=1,2£¬¡­,max_iter do ²½Öè3£¬¶ÔÓÚÿһ¸öÑùÀýͼÏñ¿éxjm£¬ÔÚ Z ¡ÁZ ¡ÁD ´óСµÄ¾Ö²¿´°¿ÚÖÐËÑË÷kª²½üÁÚͼÏñ¿é£¬µÃµ½Ã¿¸öÑùÀýͼÏñ¿éµÄÏàËÆ¿é×éLmi£» ²½Öè4£¬Forÿ¸öÏàËÆ¿é×éLmido //ͨ¹ýADMMËã·¨Çó½â While not convergence do ¸üÐÂS ¸üÐÂUjj=1,2,3 ¸üÐÂMjj=1,2,3 ¸üгË×Ó¦Ì+=¦Ñ¦Ì£» End while End for ²½Öè5£¬Í¨¹ýÔÚÿ¸öÏñËØµã¾ÛºÏLmiµÃµ½Ï¡ÊèÕÅÁ¿L£» ²½Öè6,¹Ì¶¨Ï¡ÊèÕÅÁ¿Lͨ¹ýÇó½â¸üÐÂx£º Fork=1,2,¡­,K do ¼ÆËãµÚk¸öÈýάÊÓÆµÍ¼Ïñ¿é£º xk=((¦µk)T¦µk+¦ÇI)-1((¦µk)Tyk+¦ÇLmi(k)) End for ²½Öè7,ͨ¹ýÔÚÿ¸öÏñËØµã¾ÛºÏxk1¡Ük¡ÜKµÃµ½¹À¼ÆÊÓÆµÐòÁÐx^£» Endfor Êä³ö£º ×îÖÕÖØ¹¹ÊÓÆµÐòÁÐx^¡£ ͼ3.13CACTI µÄ·Ö¿éÊÓÆµ¸ÐÖª¿ò¼Üͼ 2. »ùÓÚ¸ß˹ÁªºÏÏ¡ÊèÄ£Ð͵ÄÊÓÆµÖع¹ ÓÉËã·¨3.1µÄ²½Öè1ÖпÉÒÔ¿´³ö£¬»ùÓÚITSµÄÖØ¹¹Ä£ÐÍÐèÒªÒ»¸ö³õʼ¹À¼ÆµÄÊÓÆµÐòÁС£±¾½Úͨ¹ý²ÉÓÃÏàÁÚÖ¡Ö®¼äµÄÏàËÆÐÔ£¬Ìá³öÁËÓÃÓÚ³õʼÊÓÆµ¹À¼ÆµÄ¸ß˹ÁªºÏÏ¡ÊèÄ£ÐÍ(Gaussian Joint Sparsity model£¬GJS)¡£ 1) ·Ö¶ÎÏßÐÔ¹À¼Æ YuµÈÈ˽éÉÜÁ˲ÉÓ÷ֶÎÏßÐÔ¹À¼Æ(Piecewise Linear Estimations£¬PLE)½â¾ö¶þάͼÏñÄæÎÊÌâµÄÒ»°ã¿ò¼Ü£Û41£Ý¡£»ùÓÚ»ìºÏ¸ß˹ģÐÍ(Mixture Gaussian Model,GMM)µÄPLE·½·¨Í¨¹ý×î´ó»¯ºóÑé¸ÅÂÊÀ´Çó½â£¬ÎªÄæÎÊÌâÌṩÁËÒ»°ãÇÒÓÐЧµÄ½â¾ö·½°¸£¬ÔÚÒÑ֪ÿ¸öͼÏñ¿éµÄѹËõ²âÁ¿Ê±£¬¿ÉÒÔͨ¹ýάÄÉÂ˲¨Æ÷ÖØ¹¹¶þάͼÏñ¿é£Û42£Ý¡£ ÔÚPLEµÄ³õʼ»¯ÖУ¬K-1¸ö¸ß˹·ÖÁ¿¶ÔÓ¦ÓÚ´Ó0µ½¦Ð¾ùÔȲÉÑùµÄK-1¸ö½Ç¶È£¬ÕâЩK-1¸ö·ÖÁ¿µÄPCA¿Õ¼äÊÇ»ùÓÚÑØÏàͬ·½ÏòµÄºÏ³ÉºÚ°×±ßԵͼÏñѧϰµÃµ½µÄ£¬µÚK¸ö¸ß˹·ÖÁ¿²ÉÓÃDCT×÷Ϊ»ùÓÃÀ´²¶»ñ¸÷ÏòͬÐÔͼÏñͼ°¸¡£ 2£© ¸ß˹ÁªºÏÏ¡ÊèÄ£ÐÍ PLEÊÇÒ»ÖÖÖØ¹¹¶þάͼÏñµÄ·½·¨£¬µ«²¢²»ÄÜÖ±½ÓÍØÕ¹µ½ÊÓÆµÖع¹ÁìÓò£¬Ò»·½ÃæÊÇÒòΪËü¶¨ÒåµÄ²»ÊÇÈýάͼÏñ¿é£» ÁíÒ»·½ÃæÊÇÒòΪËü²»Äܲ¶×½ÊÓÆµÖ¡¼äµÄÏàËÆÐÔ¡£½ÓÏÂÀ´£¬ÎªÁ˽â¾öÕâÁ½¸öÎÊÌ⣬Õë¶ÔÈýάÊÓÆµ¿é»ùÓÚÖ¡¼äµÄÏàËÆÐÔÌá³öÁËÒ»ÖÖÊÓÆµ³õʼ»¯Öع¹·½·¨¡£ Óë¶þάͼÏñÏà±È£¬ÊÓÆµÐòÁÐÖаüº¬¸ü¶àµÄÏÈÑ飬ÀýÈç¾ßÓÐÏàËÆ½á¹¹µÄÏàͬ³¡¾°ÒÔÏ൱´óµÄ¸ÅÂʳöÏÖÔÚÏàÁÚÖ¡µÄÏàͬλÖô¦¡£¶ÔÓÚ²»Í¬ÁÚÖ¡µÄÏàͬλÖã¬Èç¹ûËüÃǾßÓÐÏàËÆµÄ½á¹¹£¬ÄÇôËüÃDZãÊÇÁªºÏÏ¡ÊèµÄ£¬Ôò¿ÉÒÔͨ¹ýÏàͬµÄ·Ö²¼½¨Ä£¡£Òò´Ë£¬¼ÙÉèÔÚÏàÁÚÖ¡µÄÏàͬλÖÃÉϵÄͼÏñ¿é·þ´ÓÏàͬµÄ¸ß˹·Ö²¼£¬Ôò³ÆÖ®Îª¸ß˹ÁªºÏÏ¡Êè(Gaussian Joint Sparse,GJS)¡£ ÔÚCACTI²âÁ¿Ï£¬¹Û²âµ½µÄ¶þάͼÏñ¿éym1¡Üm¡ÜMÈçÏ£º ym=¦µmxm+¦Åm=¡ÆDi=1¦µimxim+¦Åm£¬ªÐm=1,2£¬¡­,M ÆäÖÐxm=£Ûx1Tm,x2Tm,¡­,xDTm£ÝTÊÇ´ýÖØ¹¹µÄÈýάÊÓÆµ¿é£¬ÔëÉùÏòÁ¿¦Åm¡ÊRp¡£ ´Ë¹«Ê½¿ÉÒÔ¿´×÷Ò»¸öÄæÎÊÌâ¡£ ¼ÙÉè¶þάͼÏñ¿é¿ÉÒÔͨ¹ýÒ»¸ö»ìºÏ¸ß˹·Ö²¼±íʾ£¬ÉèÓÐK¸ö¸ß˹·Ö²¼{N(¦Ìk,¦²k)}1¡Ük¡ÜK£¬ÕâK¸ö¸ß˹·Ö²¼¿ÉÒÔÓÉPCA³õʼ»¯·½²îÉú³É¡£¶þάͼÏñ¿éximÒÔ¶ÀÁ¢µÈ¸ÅÂÊ·þ´ÓÈÎÒ»¸ß˹·Ö²¼¡£¼ÙÉèͼÏñ¿éxim·þ´ÓµÚki¡Ê£Û1,K£Ý¸ö¸ß˹·Ö²¼£¬¼ÇΪ£º N(xim|¦Ìkim,¦²kim)£¬Æä¸ÅÂÊÃܶȺ¯Êý±íʾÈçÏ£º p(xim)=(2¦Ð)-N/2¦²kim-1/2exp-12(xim-¦Ìkim)T(¦²kim)-1(xim-¦Ìkim) ÈýάÊÓÆµ¿éÓÉÏàÁÚÖ¡ÏàͬλÖõĶþάͼÏñ¿é×é³Éxm=£Ûx1Tm,x2Tm,¡­,xDTm£ÝT£¬¼ÙÉèximÖ®¼äÏ໥¶ÀÁ¢£¬ÔòÈýάÊÓÆµ¿éµÄ¸ÅÂÊÃܶȺ¯ÊýΪ p(xm)=¡ÇDi=1p(xim)=N(xm|¦Ìkm,¦²-km) ÆäÖоùÖµºÍЭ·½²î¾ØÕó·Ö±ðΪ ¦Ìkm=¦Ìk1m ¦Ìk2m ¦ó ¦ÌkDm£¬¦²-km=¦²k1m00¡­00 0¦²k2m0¡­¦ó¦ó ¦ó00ª÷00 000¡­0¦²kDm ÕâÀïÊǦÌk,¦²kµÄÒ»¸ö×éºÏ£¬ÓÉÓÚ¼ÙÉèÁËK¸ö¸ß˹·Ö²¼{N(¦Ìk,¦²k)}1¡Ük¡ÜK£¬Òò´Ë(¦Ìkm,¦²-km)µÄ×éºÏµÄ¿ÉÄÜÐÔÓÐKDÖÖ£¬¿É¼ûΪÈýάÊÓÆµ¿éxmÑ¡ÔñÒ»¸öºÏÊʵĸß˹·Ö²¼ÊÇÒ»¸ö¸´ÔÓµÄ×éºÏÓÅ»¯ÎÊÌâ¡£ ÖµµÃ×¢ÒâµÄÊÇ£¬Ò»°ãÇé¿öÏÂÔÚÏàÁÚÖ¡µÄÏàͬλÖõĶþάͼÏñ¿é¾ßÓÐÏàͬµÄ½á¹¹£¬¿ÉÒÔͨ¹ýÏàͬµÄ¸ß˹·Ö²¼½¨Ä££¬³ÆÆäΪ¸ß˹ÁªºÏÏ¡Êè¡£ÓÉÓÚÈýάÊÓÆµ¿éxmÖÐËùÓеÄxim·þ´Óͬһ¸ö¸ß˹·Ö²¼Õâ¸öÌØÊâÊôÐÔ£¬KDÖÖ×éºÏµÄ¿ÉÄÜÐÔ½µÎªKÖÖ£¬ÈýάÊÓÆµ¿éKÖÖ¸ß˹·Ö²¼Îª{N(¦Ì-k,¦²-k)}1¡Ük¡ÜK£º ¦Ì-k=¦Ìk ¦Ìk ¦ó ¦Ìk£¬¦²-k=¦²k00¡­00 0¦²k0¡­¦ó¦ó ¦ó00ª÷00 000¡­0¦²k 3£© »ùÓÚPLEµÄGJSÄ£ÐÍÇó½â ÔÚ»ñµÃ±íʾÈýάµÄ¸ß˹ģÐÍÖ®ºó£¬²ÉÓÃPLEÀ´Çó½âGJSÄ£ÐÍ£Û43£Ý¡£ÓÉÓÚͼÏñ¿éµÄ¾ùÖµ×Ü¿ÉÒÔ¹éÒ»»¯£¬Òò´ËΪÁ˼ò»¯·ûºÅ£¬¼ÙÉè¸ß˹·Ö²¼¾ßÓÐÁã¾ùÖµÏòÁ¿£¬¼´¦Ìk=0£¬¶ÔÓÚµÚm¸öÈýάÊÓÆµ¿é£¬ÐźŹÀ¼ÆºÍÄ£ÐÍÑ¡Ôñͨ¹ý×î´ó»¯¶ÔÊý¸ÅÂÊÀ´¼ÆË㣺 (xm,k¡«m)= arg maxxm,k ln p(xm|ym) = arg maxxm,k(ln p(ym|xm)+lnp(xm)) = arg maxxm,k(lnN(ym|¦µmxm,¦Ò2IP)+lnN(xm|0,¦²-k)) = arg minxm,k(¡¬ym-¦µmxm¡¬2+¦Ò2xTm(¦²-k)-1xm+¦Ò2ln¦²-k) ÆäÖЦÅm¡«N(0,¦Ò2IP)£¬IPΪpάµ¥Î»¾ØÕó¡£ Ê×Ïȹ̶¨k¼ÆËãxm£¬¼´µÚk¸ö¸ß˹·Ö²¼Ä£ÐÍÏÂxm¡«N(0,¦²-k)¹À¼ÆÊÓÆµ¿é£º xkm=arg minxm(¡¬¦µmxm-ym¡¬2+¦Ò2(xm)T¦²--1k(xm)) ²ÉÓÃMAPµÃµ½xkmµÄ¹À¼ÆÖµ£º xkm=¦²-k¦µTm(¦µm¦²-k¦µTm+¦Ò2Ip)-1ym ¹À¼ÆÍêËùÓиß˹·Ö²¼Ä£ÐÍ{N(¦Ì-k,¦²-k)}1¡Ük¡ÜK ºó£¬×îÓŵÄÄ£ÐÍkmΪËùÓÐÄ£ÐÍÖоßÓÐ×î´ó¸ÅÂʵÄÄ£ÐÍ£º k¡«m=arg mink(¡¬¦µmxkm-ym¡¬2+¦Ò2(xkm)T¦²--1k(xkm)+¦Ò2log¦²-k) ×îºó£¬ÈýάÊÓÆµÐźÅÓÉ×îÓÅÄ£ÐÍkm¹À¼ÆµÃµ½ xm=xkmm ÕâÖÖ½«ÊÓÆµ½¨Ä£Îª¸ß˹ÁªºÏÏ¡ÊèÄ£ÐÍ£¬²¢²ÉÓÃPLE·½·¨Çó½âµÄ·½·¨³ÆÎªGJS_PLEËã·¨£¬ÓÃÓÚÊÓÆµÖع¹µÄGJS_PLEËã·¨µÄϸ½Ú¼û±í3.8¡£ ±í3.8GJS_PLEËã·¨ GJS_PLEËã·¨ ²½Öè1,²ÉÓÃPLEÖеijõʼ»¯·½·¨»ñµÃK¸ö¸ß˹·Ö²¼{N(¦Ì-k,¦²-k)}1¡Ük¡ÜK£¬K-1¸ö¸ß˹·ÖÁ¿¶ÔÓ¦´Ó0µ½¦Ð¾ùÔȲÉÑùµÄK-1¸ö½Ç¶È£¬µÚK¸ö¸ß˹·ÖÁ¿²ÉÓÃDCT»ù¡£ ²½Öè2,¸ù¾Ý¶þάͼÏñ¿éµÄ¸ß˹ģÐÍ{N(¦Ì-k,¦²-k)}1¡Ük¡ÜK½¨Á¢ÈýάÊÓÆµ¿éµÄÄ£ÐÍ{N(¦Ì-k,¦²-k)}1¡Ük¡ÜK£º Ðø±í ¦Ì-km=¦Ìk1m ¦Ìk2m ¦ó ¦ÌkDm£¬¦²-km=¦²k1m00¡­00 0¦²k2m0¡­¦ó¦ó ¦ó00ª÷00 000¡­0¦²kDm ¹À¼ÆÃ¿Ò»¸öÈýάÊÓÆµ¿éµÄԭʼÐźź͸ß˹ģÐÍ£º ²½Öè3,ͨ¹ý¹À¼ÆÃ¿¸öÄ£ÐÍkϵÄÐźţº xkm=¦²-k¦µTm¦µm¦²-k¦µTm+¦Ò2IP-1ym ²½Öè4,ͨ¹ýÑ¡Ôñ×îÓÅÄ£ÐÍk¡«m£º k¡«m=arg mink(¡¬¦µmxkm-ym¡¬2+¦Ò2(xkm)T¦²--1k(xkm)+¦Ò2log¦²-k) ²½Öè5,ͨ¹ý×îÓÅÄ£ÐÍk¡«m¹À¼ÆÈýάÊÓÆµ¿é£º xm=xkmm¡£ 4) ·ÂÕæÊµÑé¼°½á¹û·ÖÎö ±¾½Ú²ÉÓÃËÄÖֶԱȷ½·¨½øÐзÖÎö£¬Ò»ÖÖÊÇÔÚÎÄÏ×£Û42£ÝÖÐÌáµ½µÄGMM£¬ÁíÍâÈýÖÖÊÇÓë±¾ÕÂÌá³öËã·¨Ïà½áºÏµÄ·½·¨£¬¾ßÌåÈçÏ£º GMM¡ª¡ªYang µÈÈËÌá³öµÄ»ìºÏ¸ß˹ģÐÍÇó½âËã·¨£Û42£Ý¡£ GJS_PLE¡ª¡ª»ùÓÚ¸ß˹ÁªºÏÏ¡ÊèµÄÊÓÆµÐòÁгõʼ»¯Öع¹·½·¨¡£ GMM_ITS¡ª¡ª²ÉÓÃGMMÀ´»ñµÃ×î³õµÄÊÓÆµÐòÁУ¬È»ºó²ÉÓûùÓÚITSµÄÄ£ÐÍ»ñµÃ×îÖÕµÄÖØ¹¹ÊÓÆµÐòÁС£ GJS_PLE _ITSV¡ª¡ªÕâÊDZ¾Õ½éÉܵÄÊÓÆµÐòÁÐÖØ¹¹µÄÍêÕûËã·¨£¬¸ù¾ÝGJS_PLEËã·¨µÃµ½³õʼ»¯ÊÓÆµÐòÁУ¬È»ºó²ÉÓûùÓÚITSµÄÄ£ÐÍ»ñµÃ×îÖÕµÄÖØ¹¹ÊÓÆµÐòÁС£ (1) ²ÎÊýÉèÖᣠ¶ÔÓÚGJS_PLE·½·¨£¬K=20¸ö¸ß˹·Ö²¼{N(¦Ì-k,¦²-k)}1¡Ük¡ÜKÓÉYuµÈÈËÌá³öµÄPCA³õʼ»¯·½·¨Éú³É£Û41£Ý£¬Nx¡ÁNy´óСµÄ²âÁ¿£¬ÒÔ²½³¤ÿðþ½›ͨ¹ýˮƽºÍ´¹Ö±»¬¶¯À´·Ö¸î³ÉһϵÁÐÖØµþµÄ´óСΪP¡ÁPµÄ¿é£¬ÆäÖÐv¡Ê{1,2£¬¡­£¬P}¡£ÔÚʵÑéÖУ¬¶Ô¼ò±ãÐÔºÍ׼ȷÐÔ½øÐÐÕÛÖУ¬É趨v=P/2£¬P=8£¬¸ß˹ÔëÉù·þ´Ó¦Åm¡«N(0,¦Ò2IP)£¬¦Ò=0.01£¬ÕýÔò»¯²ÎÊý¦Ç=0.5¡£ ÕÅÁ¿Ï¡ÊèÄ£Ð͵ÄÖ÷Òª²ÎÊýÉèÖÃÈçÏ£º ¿é´óСP¡ÁP=8¡Á8£¬Ã¿¸öÑùÀý¿éÔÚZ¡ÁZ¡ÁD=25¡Á25¡ÁD´óСµÄ´°¿ÚÖÐÑ¡ÔñÓëÖ®ÏàËÆµÄQ=50¸öͼÏñ¿é£¬ÕýÔò»¯²ÎÊý¼òµ¥µØÉèÖÃΪ¦Ë=5£¬¦Ñ=1.2£¬¦Ç=0.5£¬ÆäËû²ÎÊý²ÎÕÕÎÄÏ׵IJ¹³ä²ÄÁÏ£Û38£Ý¡£ÎªÁ˼õÉÙ¼ÆË㸴ÔÓ¶È£¬ÊµÑéÖÐÑØË®Æ½ºÍ´¹Ö±·½Ïòÿ¸ô5¸öÏñËØÌáȡһ¸öÑùÀýͼÏñ¿é¡£ (2) ʵÑé½á¹û¡£ ͨ¹ýÎå¸öÊÓÆµ½øÐÐCACTI¹Û²â¼°Öع¹£¬ÉèÖÃʱ¼äѹËõ±ÈD=8£¬Îå¸öÊÓÆµ·Ö±ðÊÇ£º TrafficÊÓÆµ£¬´óСΪ256¡Á256¡Á96ÏñËØ£» WindmillÊÓÆµ£¬´óСΪ256¡Á256¡Á128ÏñËØ£» DroplightÊÓÆµ£¬´óСΪ288¡Á352¡Á500ÏñËØ£» WheelÊÓÆµ£¬´óСΪ288¡Á352¡Á602ÏñËØ£» FountainÊÓÆµ£¬´óСΪ288¡Á352¡Á782ÏñËØ¡£ ͼ3.14ºÍͼ3.15¡¢Í¼3.16ºÍͼ3.17¡¢Í¼3.20ºÍͼ3.21¡¢Í¼3.22ºÍͼ3.23¡¢Í¼3.24ºÍͼ3.25·Ö±ðչʾÁËGMM¡¢GJS_PLE¡¢GMM_ITSºÍGJS_PLE_ITS¶Ô Traffic¡¢Windmill¡¢Droplight¡¢Wheel¡¢FountainµÚ1Ö¡ºÍµÚ8Ö¡µÄÖØ¹¹½á¹ûͼ¡£´ÓʵÑé½á¹û¿ÉÒÔ¿´³ö£¬GJS_PLE_ITSËã·¨¿ÉÒÔÌṩ¸ßÊÓ¾õÖÊÁ¿£¬ÓÐЧµØ½µµÍÁ˱ßÔµµÄÔëÒô¡£»ùÓÚGJS_PLEµÄ³õʼ»¯ ÖØ¹¹Ëã·¨¿ÉÒÔ»ñµÃ±ÈGMMËã·¨¸ü¾«È·µÄ±ßÔµ£¬Äܹ»¶ÔÊÓÆµÖÐÒÆ¶¯³¡¾°µÄ±ßÔµ½øÐнϺõĹÀ¼Æ£¬Ëù»ñµÃµÄ³õʼͼÏñ½á¹¹ÐÔ¸üÇ¿¡£ÓëûÓÐÕÅÁ¿Ï¡ÊèÔ¼ÊøÄ£Ð͵ķ½·¨Ïà±È£¬GMM_ITSºÍGJS_PLE_ITSÖØ½¨½á¹û¸ü¼Óƽ»¬ºÍÒ»Ö£¬ÊÓÆµÖÐÒÆ¶¯Ä¿±êµÄ±ßÔµ½á¹¹¸ü¼ÓÇåÎú£¬ÀýÈçÒÆ¶¯ ͼ3.14TrafficµÚ1Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ ͼ3.15TrafficµÚ8Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ ͼ3.16WindmillµÚ1Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ ͼ3.17WindmillµÚ8Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ ͼ3.18²»Í¬Öع¹·½·¨¶ÔTrafficÊÓÆµµÄÖØ¹¹PSNR ͼ3.19²»Í¬Öع¹·½·¨¶ÔTrafficÊÓÆµµÄÖØ¹¹SSIM ͼ3.20DroplightµÚ1Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ ͼ3.21DroplightµÚ8Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ µÄÆû³µ¡¢×ª¶¯µÄ·çÒ¶¡¢ÐýתµÄ³µÂÖºÍÅçÓ¿µÄȪˮ¡£ÁíÒ»·½Ã棬¾­¹ý¶Ô±Èͼ3.16ºÍͼ3.17Öв»Í¬Öع¹·½·¨ÏÂWindmill·çÒ¶µÄλÖ㬿ÉÒÔ¿´³öGMMË㷨ģºýÁËÒÆ¶¯Ä¿±êµÄÈ·¶¨Î»Ö㬶øGJS_PLEÄܹ»½ÏΪ¾«È·µØÕ¹Ê¾³öÒÆ¶¯Ä¿±êµÄλÖá£Í¼3.18ºÍͼ3.19ΪTrafficÊÓÆµÊý¾Ý»æÖÆÁËGMM¡¢GJS_PLE¡¢GMM_ITSºÍGJS_PLE_ITS·½·¨µÄPSNRºÍSSIMÕÛÏßͼ¡£´Óͼ3.20ºÍͼ3.21µÄ¶Ô±ÈÖÐÒ²¿ÉÒÔ¿´³ö£¬³õʼ»¯Öع¹Ëã·¨GJS_PLEÄܹ»¸ü׼ȷµØÖع¹°Ú¶¯µõµÆµÄ±ßÔµÇøÓò¡£×ÛºÏÀ´Ëµ£¬ÔÚGJSª²PLEÄ£ÐÍÌṩ·½Ïò½á¹¹ÐÔ½ÏÇ¿µÄ³õÊ¼ÖØ¹¹Í¼Ïñ»ù´¡ÉÏ£¬²ÉÓûùÓÚITSµÄÖØ¹¹Ä£ÐÍ£¬Äܹ»ÓÐЧÌá¸ßͼÏñÖØ¹¹ÖÊÁ¿£¬¶þÕßÏà½áºÏÄܹ»ÓÐЧÒÖÖÆÒÆ¶¯±ßÔµµÄÔëÉù£¬ÌṩÇåÎú¿É¿¿µÄÒÆ¶¯±ßÔµ£¬±£Ö¤¹â»¬ÇøÓòµÄÒ»ÖÂÐÔ¡£ ͼ3.22WheelµÚ1Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ ͼ3.23WheelµÚ8Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ ͼ3.24FountainµÚ1Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ ͼ3.25FountainµÚ8Ö¡²»Í¬Öع¹·½·¨µÄ½á¹ûͼ ±í3.9ºÍ±í3.10·Ö±ðչʾÁËTrafficÊÓÆµºÍWindmillÊÓÆµµÄµÚ1~8Ö¡ÖØ¹¹µÄ·åÖµÐÅÔë±È(Peak Signal to Noise Ratio,PSNR)¼°½á¹¹ÏàËÆÐÔ¶ÈÁ¿Ö¸±êSSIM(Structural Similarity)¡£¿ÉÒÔ¿´³ö£¬ËùÓÐÈýÖÖÌá³öµÄ·½·¨¡ª¡ªGJS_PLE£¬GMM_ITSºÍGJS_PLE_ITSµÄPSNR¼°SSIMÖµ¾ù±ÈGMMËã·¨µÄÏàÓ¦Öµ¸ß¡£¶ÔÓÚTrafficÊÓÆµÀ´Ëµ£¬»ùÓÚÕÅÁ¿Ï¡ÊèµÄÔ¼Êø¶ÔÊÓÆµµÄÖÊÁ¿ÌáÉýЧ¹û¸ü´ó£» ¶ÔÓÚWindmillÊÓÆµÀ´Ëµ£¬GJS_PLEÄܸüÓÐЧ²¶×½ÊÓÆµÖÐÒÆ¶¯µÄ½á¹¹¡£ ±í3.9TrafficµÚ1~8Ö¡ÖØ¹¹½á¹û±í Ö¡Êý ·½·¨/PSNR(SSIM) GMM GJS_PLE GMM_ITS GJS_PLE_ITS 1 21.06(0.6908) 21.63(0.6857) 23.79(0.7949) 25.01(0.8235) 2 21.36(0.7057) 21.77(0.7051) 24.04(0.8029) 24.88(0.8241) 3 21.28(0.7088) 21.68(0.7069) 23.88(0.8033) 24.60(0.8230) 4 21.37(0.7157) 21.56(0.7110) 23.84(0.8018) 24.57(0.8233) 5 21.22(0.7092) 21.69(0.7128) 23.67(0.7996) 24.43(0.8242) 6 21.24(0.7101) 21.47(0.7074) 23.80(0.8013) 24.47(0.8223) 7 21.07(0.7062) 21.35(0.6943) 23.58(0.7961) 24.34(0.8202) 8 20.68(0.6856) 21.16(0.6795) 23.27(0.7854) 24.17(0.8118) ±í3.10WindmillµÚ1~8Ö¡ÖØ¹¹½á¹û±í Ö¡Êý ·½·¨/PSNR(SSIM) GMM GJS_PLE GMM_ITS GJS_PLE_ITS 1 24.41(0.8217) 27.50(0.8847) 24.79(0.8357) 28.51(0.9102) 2 25.28(0.8316) 27.44(0.8879) 25.61(0.8441) 28.48(0.9131) 3 25.50(0.8349) 27.79(0.8945) 25.85(0.8471) 28.85(0.9191) 4 25.48(0.8385) 27.77(0.8966) 25.83(0.8515) 28.86(0.9216) 5 25.70(0.8407) 27.65(0.8958) 26.02(0.8522) 28.74(0.9209) 6 25.52(0.8411) 27.82(0.8932) 25.84(0.8525) 28.87(0.9186) 7 25.19(0.8361) 27.78(0.8887) 25.54(0.8488) 28.86(0.9136) 8 24.23(0.8204) 27.84(0.8848) 24.61(0.8336) 28.88(0.9105) ±¾½ÚÔÚCACTI²âÁ¿Ï£¬Ìá³öÁËÒ»ÖÖ»ùÓÚITSÊÓÆµÖؽ¨Ëã·¨¡£Í¨¹ý½«ÊÓÆµÖع¹ÎÊÌâת»¯ÎªÕÅÁ¿Ï¡Êè½üËÆÎÊÌ⣬¸ÃËã·¨¾ßÓÐÒÔÏÂÓŵ㣺 (1) ÕÅÁ¿Ï¡ÊèÄ£ÐÍ£¬³ä·ÖÀûÓÃÖ¡ÄÚºÍÖ¡¼ä(¿Õ¼äºÍʱ¼ä)µÄÕÅÁ¿Ï¡Êè³Í·£À´²¶»ñÊÓÆµµÄ×ÔÏàËÆÐÔ£¬²¢ÇÒITS¶ÈÁ¿±»ÓÃ×÷ÕÅÁ¿Ï¡Êè¶ÈÁ¿£¬Ëü½áºÏÁËTuckerºÍCP·Ö½â¶ÔÓÚÕÅÁ¿Ï¡Êè¶ÈÁ¿µÄÓÅÊÆ£¬ÔÚ»Ö¸´ÎÆÀí¡¢±ßÔµµÈ½á¹¹·½Ãæ±íÏÖÁ¼ºÃ¡£ (2) Ìá³öÁËGJSÄ£ÐÍÓÃÀ´Öع¹³õʼ»¯ÊÓÆµÐòÁУ¬½«¸ß˹»ìºÏÄ£ÐÍÓëÁªºÏÏ¡ÊèÄ£ÐͽáºÏÆðÀ´½¨Á¢¸ß˹ÁªºÏÏ¡ÊèÄ£ÐÍÀ´Çó½âÈýάÊÓÆµ£¬¸ÃÄ£ÐÍÄܹ»ºÜºÃµØ·´Ó³ÊÓÆµÖ¡¼äµÄÏàËÆÐÔ¡£ ×îºóʵÑé½á¹ûºÍ·ÖÎö±íÃ÷£¬ËùÌá³öµÄGJS³õʼ»¯·½·¨ºÍ»ùÓÚITSµÄÊÓÆµÖع¹·½·¨¾ßÓÐÁ¼ºÃµÄ±íÏÖÐÔÄÜ¡£ 3.5±¾ÕÂС½á ±¾Õ½éÉÜÁ˼¸ÖÖ¾­µäµÄ½á¹¹»¯Ï¡ÊèѹËõ¸Ð֪ģÐͼ°ÆäÖØ¹¹Ëã·¨£¬Ö÷ÒªÓпéÏ¡ÊèѹËõ¸ÐÖª·½·¨¡¢ÁªºÏÏ¡ÊèѹËõ¸ÐÖª·½·¨£¬ÆäÖпéÏ¡ÊèѹËõ¸ÐÖª°üÀ¨¿é»ìºÏ·¶ÊýÓÅ»¯Ëã·¨¡¢¿éÕý½»Æ¥Åä×·×ÙËã·¨¡¢¿éÆ¥Åä×·×ÙËã·¨¡¢¿éÏ¡Êè×Ó¿Õ¼äѧϰËã·¨¼°¿éÏ¡Ê豴Ҷ˹Ëã·¨£» ÁªºÏÏ¡ÊèѹËõ¸ÐÖª·½·¨°üÀ¨ÈýÖÖÁªºÏÏ¡ÊèÄ£ÐÍϵÄÖØ¹¹Ëã·¨ÒÔ¼°¸ß˹ÁªºÏÏ¡ÊèÕÅÁ¿Ñ¹Ëõ¸ÐÖª£¬Îª´ÓÊÂÐźŴ¦Àí¹¤×÷µÄ¹ã´ó¶ÁÕßÌṩ²Î¿¼ºÍ½è¼ø¡£ ²Î¿¼ÎÄÏ× £Û1£ÝJi S H,Dunson D,Carin L.Multitask compressive sensing£ÛJ£Ý.IEEE Transactions on Signal Processing,2009,57(1)£º 92ª²106. £Û2£ÝParvaresh F,Vikalo H,Misra S,et al.Recovering sparse signals using sparse measurement matrices in compressed DNA microarrays£ÛJ£Ý.IEEE Journal of Selected Topics in Signal Processing,2008,2(3)£º 275ª²285. £Û3£ÝMishali M,Eldar Y C.From theory to practice£º subª²nyquist sampling of sparse wideband analog signals£ÛJ£Ý.IEEE Journal of Selected Topics in Signal Processing,2010,4(2)£º 375ª²391. £Û4£ÝDavies M E,Eldar Y C.Rank awareness in joint sparse recovery£ÛJ£Ý.IEEE Transactions on Information Theory,2012,58(2)£º 1135ª²1146. £Û5£ÝÐùÆôÔË.»ùÓÚ×ÖµäѧϰµÄÁªºÏ¿éÏ¡Êè·Ö½âËã·¨Ñо¿£ÛD£Ý.¹þ¶û±õ£º ¹þ¶û±õ¹¤Òµ´óѧ,2019. £Û6£ÝYong L,Dai W,Zou J,et al.Structured sparse representation with union of dataª²driven linear and multilinear subspaces model for compressive video sampling£ÛJ£Ý.IEEE Transactions on Signal Processing,2017,65(99)£º 5062ª²5077. £Û7£ÝRamirez I,Sprechmann P,Sapiro G.Classification and clustering via dictionary learning with structured incoherence and shared features£ÛC£Ý.Computer Vision and Pattern Recognition,2010 IEEE Conference on.IEEE,2010. £Û8£ÝZhang Z,Wang Y,Chong E,et al.Subspace selection for projection maximization with matroid constraints£ÛJ£Ý.IEEE Transactions on Signal Processing,2017,65(5)£º 1339ª²1351. £Û9£ÝEldar Y C,Member S,Member S,et al.Robust recovery of signals from a structured union of subspaces£ÛJ£Ý.IEEE Transactions on Information Theory,2009,55(11)£º 5302ª²5316. £Û10£ÝEwout V,Friedlander M P.Sparse optimization with leastª²squares constraints£ÛJ£Ý.Siam Journal on Optimization,2011,21(4)£º 1201ª²1229. £Û11£ÝHuang J Z,Zhang T,Metaxas D.Learning with structured sparsity£ÛP£Ý.Machine Learning,2009£º 417ª²424. £Û12£ÝYu L,Sun H,Barbot J P,Zheng G.Bayesian compressive sensing for cluster structured sparse signals£ÛJ£Ý.Signal Processing,2011,92(1)£º 259ª²269. £Û13£ÝPeleg T,Eldar Y,Elad M.Exploiting statistical dependencies in sparse representations for signal recovery£ÛJ£Ý.IEEE Trans.on Signal Processing,2012,60(5)£º 2286ª²2303. £Û14£ÝBishop C M,Pattern recognition and machine learning(Information Science and Statistics)£ÛM£Ý.Secaucus,NJ,USA£º Springerª²Verlag New York,Inc.,2006. £Û15£ÝBlei D M,Ng A Y,Jordan M I.Latent dirichlet allocation£ÛJ£Ý.Journal of Machine Learning Research,2003,3£º 993ª²1022. £Û16£ÝHe L,Carin L.Exploiting structure in waveletª²based Bayesian compressive sensing£ÛJ£Ý.IEEE Transactions on Signal Processing,2009,57(9)£º 3488ª²3497. £Û17£ÝCevher V,Duarte M,Hegde C,el at.Sparse signal recovery using Markov random fields£ÛC£Ý.Advances in Neural Information Processing Systems 21,Proceedings of the Twentyª²Second Annual Conference on Neural Information Processing Systems,Vancouver,British Columbia,Canada,Dec.2008. £Û18£ÝCevher V,Indyk P,Carin L,el at.Sparse signal recovery and acquisition with graphical models£ÛJ£Ý.IEEE Signal Processing Magazine,2010,27(6)£º 92ª²103. £Û19£ÝMohammadª²Djafari A A A.Bayesian inference for inverse problems£ÛM£Ý.San Diego,California.1998. £Û20£ÝChen S,Donoho D,Saunders M.Atomic decomposition by basis pursuit£ÛJ£Ý.Siam Journal on Scientific Computing,1998,20(1)£º 33ª²61. £Û21£ÝDaubechies I,DeVore R,Fornasier M,et al.Iteratively reª²weighted least squares minimization£º proof of faster than linear rate for sparse recovery£ÛC£Ý.Conference on Information Sciences & Systems,2008£º 26ª²29. £Û22£ÝGorodnitsky I F,Rao B.D.Sparse signal reconstruction from limited data using FOCUSS£º a reª²weighted minimum norm algorithm£ÛJ£Ý.IEEE Transactions on Signal Processing,1997,45(3)£º 600ª²616. £Û23£ÝCand¨¨s E,Tao T.Decoding by linear programming£ÛJ£Ý.IEEE Transactions on Information Theory,2005,51(12)£º 4203ª²4215. £Û24£ÝChartrand R,Yin W.Iteratively reweighted algorithms for compressive sensing£ÛC£Ý.In Proc.ICASSP,2008£º 3869ª²3872. £Û25£ÝJi S,Ya X,Carin L.Bayesian compressive sensing£ÛJ£Ý.IEEE Transactions on Signal Processing,2008,56(6)£º 2346ª²2356. £Û26£ÝBabacan S D,Molina R,Katsaggelos A K.Bayesian compressive sensing using Laplace priors£ÛJ£Ý.IEEE Transactions on Image Processing,2010,19(1)£º 53ª²63. £Û27£ÝTipping M E.Sparse Bayesian learning and the relevance vector machine£ÛJ£Ý.Journal of Machine Learning Research,2001,1£º 211ª²244. £Û28£ÝBeal M.Variational algorithms for approximate Bayesian inference£ÛD£Ý.Phd Thesis University of London,2003. £Û29£ÝBaraniuk R G,E Cand¨¨s,Nowak R,et al.Compressive sampling£ÛJ£Ý.IEEE Signal Processing Magazine,2008,25(2)£º 1433ª²1452. £Û30£ÝDonoho D.Compressed sensing£ÛJ£Ý.IEEE Transactions on Information Theory,2006,52(4)£º 1289ª²1306. £Û31£ÝTropp J,Gilbert A.Signal recovery from partial information via orthogonal matching pursuit£ÛJ£Ý.IEEE Transactions on Information Theory,2007,53(12)£º 4655ª²4666. £Û32£ÝDonoho D L,Tsaig Y,Drori I,et al.Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit£ÛJ£Ý.IEEE Transactions on Information Theory,2012,58(2)£º 1094ª²1121. £Û33£ÝNeedell D,Tropp J.CoSaMP£º iterative signal recovery from incomplete and inaccurate samples£ÛJ£Ý.Applied and Computational Harmonic Analysis,2009,26(3)£º 301ª²321. £Û34£ÝRobert C P,Casella G.Monte Carlo statistical methods£ÛM£Ý.Springer Verlag,2004. £Û35£ÝZhang W,Ma C,Wang W,et al.Side information based orthogonal matching pursuit in distributed compressed sensing£ÛC£Ý.IEEE International Conference on Network Infrastructure and Digital Content,2010£º 80ª²84. £Û36£ÝTucker L.Some mathematical notes on threeª²mode factor analysis£ÛJ£Ý.Psychometrika,1966,31(3)£º 279ª²311. £Û37£ÝKolda T G,Ba Der B W.Tensor decompositions and applications£ÛJ£Ý.Siam Review,2009,51(3)£º 455ª²500. £Û38£ÝQi X,Qian Z,Meng D,et al.Multispectral images denoising by intrinsic tensor sparsity regularization£ÛC£Ý.IEEE Conference on Computer Vision & Pattern Recognition,2016. £Û39£ÝBoyd S,Parikh N,Hu E C,et al.Distributed optimization and statistical learning via the alternating direction method of multipliers£ÛJ£Ý.Foundations & Trends in Machine Learning,2010,3(1)£º 1ª²122. £Û40£ÝGong P,Zhang C,Lu Z,et al.A general iterative shrinkage and thresholding algorithm for nonª²convex regularized optimization problems£ÛJ£Ý.Applied Mathematics,2013. £Û41£ÝYu G.Solving inverse problems with piecewise linear Estimators£º from Gaussian mixture models to structured sparsity£ÛJ£Ý.IEEE Transactions on Image Processing,2012,21(5)£º 2481ª²2499. £Û42£ÝYang J,Yuan X,Liao X,et al.Video compressive sensing using Gaussian mixture models£ÛJ£Ý.IEEE Transactions on Image Processing,2014,23(11)£º 4863ª²4878. £Û43£ÝYu G,Sapiro G.Statistical Compressed Sensing of Gaussian mixture models£ÛJ£Ý.IEEE Transactions on Signal Processing,2011,59(12): 5842ª²5858.