中小学创客教育丛书

青少年Arduino智能设计 趣味课堂

		方声	、 桂	主	编
刘	锋	夏	兰	副王	主编

清华大学出版社 北 京

WQ01.indd 1

2020/11/4 8:50:08

内容简介

Arduino是一款便捷灵活、方便上手的电子产品开发平台。Arduino通过各种传感器感知周围的环境,然后做出反应和处理,最后通过声、光(LED)、动(电机、舵机)等表现形式输出。 在程序控制下,Arduino使电路变得更智能,并降低了创意电子设计的门槛,使越来越多的人加入创客队伍,制作出更多令人惊艳的互动电子创意作品。

本书共8个单元,28个案例,从最基础的了解硬件、认识软件开始,点亮小灯,转动风扇……到智能小车等,每课完成一个小任务。全书将知识点融入一个个好玩、有趣的案例中,提高青少年发现问题、分析问题、解决问题的能力和自主探究与团队合作意识,培养其计算思维和逻辑思维能力。

本书适合中小学生阅读使用,可以作为教材辅助校外机构及学校社团开展创意智造活动,也可作为广大中小学教师和培训学校开展创客教育的指导用书。

本书封面贴有清华大学出版社防伪标签,无标签者不得销售。

版权所有,侵权必究。举报:010-62782989,beiqinquan@tup.tsinghua.edu.cn。

图书在版编目(CIP)数据

青少年Arduino智能设计趣味课堂: 微课版 / 方其桂主编. 一北京: 清华大学出版社, 2021.1 (中小学创客教育丛书) ISBN 978-7-302-56548-2

Ⅰ.①青… Ⅱ.①方… Ⅲ.①单片微型计算机一程序设计一青少年读物 Ⅳ.①TP368.1-49

中国版本图书馆CIP数据核字(2020)第187279号

责任编辑: 李 磊 封面设计: 王 晨 版式设计: 孔祥峰 责任校对: 马遥遥

责任印制:杨艳

出版发行:清华大学出版社

址: http://www.tup.com.cn, http://www.wqbook.com XX 址:北京清华大学学研大厦A座 地 邮 编: 100084 社 总 机: 010-62770175 邮 购: 010-62786544 投稿与读者服务: 010-62776969, c-service@tup.tsinghua.edu.cn 质量反馈: 010-62772015, zhiliang@tup.tsinghua.edu.cn 印装者:三河市铭诚印务有限公司 经 销: 全国新华书店 开 本: 170mm×240mm EП 数: 318千字 张: 13.75 字 版 次: 2021年1月第1版 EП 次: 2021年1月第1次印刷 定 价: 69.80元

产品编号: 085523-01

主	编	方其	ŧ桂				
副主	Ξ编	刘	锋	夏	<u>¥</u>		
编	委(排名?	不分先月	言)			
		谢褚	霞	짜	俊	汪琄	岩生
		Ŧ	斌	王	军	苑	涛
		刘	斌	张	青	黎	沙
		程	武	叶	俊	戴	静
		张小	∖龙	周才	Z阔	何	源
		王国	「娟	唐小	∖华	赵位	可水
		鲍去	「寒	苏	科	贾	波

2020/11/4 8:50:08

创客教育呈朝阳之势,蓬勃发展,越来越多的中小学校、校外科技场所参与进来。 在中小学教育阶段,学生处于身心快速发展的关键时期,是促进其创新意识、计算思 维和实践能力的重要阶段。作为未来人工智能时代的主人,软硬件结合才是王道,因 此基于 Arduino 和 Mixly 编程的创客学习,让梦想变得触手可及。

一、Arduino 能做什么

Arduino 是一款便捷灵活、方便上手的电子作品开发工具。它通过各种传感器感知 周围的环境,然后做出反应和处理,最后通过声、光(LED)、动(电机、舵机)等形式输出。 它降低了创意电子设计的门槛,让越来越多的人加入创客队伍,制作出更多令人惊艳 的互动电子创意作品。

二、需要什么硬件和软件

本书选用的硬件为 Arduino UNO 国产板 + 扩展板 + 各种普通传感器。从 Arduino 出现至今,已经设计出很多不同的版本。Arduino 主板和扩展板多种多样,虽然外观上 有区别,其原理和操作方法是一样的,甚至大部分管脚、接口也是一致的,因此,你 可以选用任何品牌的 Arduino 主板。

Arduino 主板 + 扩展板解决了连接多个传感器时出现电源接口不够用的情况,且 线路整洁,插拔方便,使开发创意作品变得更加简单。书中涉及的传感器也没有特别 要求,任何品牌均可。这些硬件价格便宜,在网络上很容易买到,例如,主板 100 元 左右,扩展板 50 元左右,各种传感器从几元至十几元不等。

使用 Arduino 制作创意电子作品,需要使用编程软件。听到编程,小伙伴们是不 是觉得很难?其实,本书中用到的 Mixly 是一款很棒的免费图形化编程软件,让编程 就像搭积木一样简单,本书中使用的是 Mixly 0.999 版本。

三、本书结构

本书从最基础的了解硬件、认识软件开始,点亮小灯,转动风扇……到智能小车等, 由易到难,每课完成一个小任务。全书将知识点融入一个个好玩、有趣的案例中,让 孩子先打开脑洞,发现问题、分析问题,在完成模仿项目的基础上进行拓展、创意升级。 全书分8个单元28课,每课设计了多个栏目,多方面引导学生探究思考,提高学生的 学习兴趣。

○ 产品创意:通过头脑风暴、思路分析等环节,设计想一想、说一说、画一画、填 一填等活动形式,抛砖引玉,打开脑洞,激发创意。

前言

- ♡ 规划设计:进行线路规划、外观设计等,对作品制作重难点进行分析、设计。
- 制作准备:介绍作品制作中使用到的知识点和程序中的重点、难点知识,为后面 电路连接和编写程序提供理论和技术支撑。
- ♡ 技术实施:通过连接电路、编写程序、制作外观等环节,掌握作品创作、调试 过程。
- 测评提高:通过牛刀小试、创意升级环节,预设孩子学习存在的困难、鼓励创新 作品等,完成属于自己的个性化作品,让孩子体验创意设计的成功与快乐!

四、本书特点

本书的重点既没有单纯地放在硬件上,也没有单纯地放在软件上,而是放在了创 意的分析、材料的选择、线路的规划、程序的搭建、作品的实现等。本书案例选取以 趣味性为主,充分体现"玩中学",在玩的过程中提升动手能力、创新能力、沟通合 作能力,进而培养孩子们提出问题、分析问题和解决问题的综合能力。在编写时作者 努力体现如下特色。

- 理念先进:让孩子自主探索、学会发问,培养"发现问题、分析问题、解决问题" 的能力;多学科整合、学以致用,案例综合应用各学科知识,培养孩子的实践和 创新能力。
- **实例丰富**:28 个有趣、好玩的实例,编排合理,难度适中,既有详细的分析和制 作指导,降低了学习难度,又拓展思路,让创意升级。
- 图文并茂:本书采用全彩图解 + 视频讲解的形式,介绍了创意设计的思路与技巧, 便于读者边学边练。
- ♡ 资源丰富:本书配备了所有案例的测试程序,直观、明了;提供了相应的微课, 让学习变得更轻松。
- ♡ 形式贴心:如果在学习过程中遇到疑问,可以阅读"提示"板块,避免走弯路。

五、本书读者对象

这本书写给零基础、准备加入创客战队的你!适合作为全国中小学生电脑制作活动"创客项目"、全国创意编程和智能设计大赛等辅导活动教材使用,相信对于刚起 步要开展创客类课程的你,会有很好的指导与帮助作用。

"项目式学习"是创客教育提倡的基本学习方式,也是学生在家庭、创客工作坊 中开展学习的基本方式。本书倡导让学生通过探究、合作、实践、分享等方式,落实 学生主体地位,促进其自主学习能力、动手实践能力以及创新精神等方面的发展。

六、本书作者

参与本书编写的作者有省级教研人员,以及具有多年教学经验的中小学信息技术 教师,曾经编写并出版过多部计算机书籍,有着丰富的教材编写经验。

本书由方其桂担任主编,刘锋、夏兰担任副主编。刘锋负责编写前言和第1、2单

元,巫俊负责编写第3、4单元,汪瑞生负责编写第5、6单元,王斌负责编写第7单元, 夏兰负责编写第8单元。随书资源由方其桂整理制作。

虽然我们有着十多年撰写计算机图书的经验,并尽力认真构思、验证和反复审核 修改,但仍难免有一些瑕疵。我们深知一本图书的好坏,需要广大读者去检验评说, 在此我们衷心希望你对本书提出宝贵的意见和建议。服务电子邮箱为 wkservice@ vip.163.com。

七、配套资源使用方法

本书提供了每个案例的微课,请扫描书中案例名称旁边的二维码,即可直接打开 视频进行观看,或者推送到自己的邮箱中下载后进行观看。另外,本书提供教学课件 和案例源文件,通过扫描下面的二维码,然后将内容推送到自己的邮箱中,即可下载 获取相应的资源(注意:请将这两个二维码下的压缩文件全部下载完毕,再进行解压, 即可得到完整的文件内容)。

编者

目录

第1单元 认识 Arduino 新朋友

第1课	创客之灯亮起来	2
第2课	门铃制作超简单	11

第2单元 百变小灯本领大

第3课	交替闪烁红绿灯	23
第4课	电子蜡烛趣味灯	30
第5课	光敏声控楼道灯	41
第6课	怦然心动呼吸灯	49

第3单元 花样显示可爱多

第7课	数字显示倒计时	59
第8课	点阵显示表情多	65
第9课	双人抢答数码显	72
第10课	调皮可爱招财猫······	79

第4单元 玩转智能电风扇

第11课	智能调速控风扇	88
第12课		93
第 13 课	红外遥控电风扇	99
第 14 课	冷暖自知电风扇	105

第5单元 气象信息我会测

第 15 课	室外温度检测仪	112
第 16 课	空气湿度检测仪	119
第 17 课	光照强度检测仪	126
第18课	下雨智能提示器	133

第6单元 家庭安全长守护

第19课	燃气泄漏报警器·····	141
第 20 课	火警火焰报警器	148
第21课	门窗防盗报警器······	155
第22课	管道漏水报警器	161

第7单元 智能小车本领大

第23课	智能驾驶避障车	169
第 24 课	智能红外遥控车	177
第25课	智能循迹送餐车	184
第26课	智能灭火消防车	189

第8单元 扩展功能巧应用

第 27 课	制作问题抢答器	197
第 28 课	摇摇动感荧光棒	205

VI

第1单元

认识 Arduino 新朋友

Arduino 是全球最流行的开源硬件之一,在程序控制下,Arduino 使电路变得更鲜活、更智能。Arduino 简单的开发方式使创客们更关注 创意与实现,更快地完成自己的项目开发,实现创意。

本单元设计了2个活动。通过认识 Arduino 主板、传感器,掌握 传感器与主板的连接,使用 Mixly 软件编写程序并上传到主板,体验初 步实现创意设计的成功与快乐!

翻开这本书,同学们会看到许多精彩的案例,是不是迫不及待 地想动手试试呢!灯不再只是照明,还可以用来点缀生活、美化城 市和创意设计饰品等。下面我们就通过点亮 LED 灯来和 Arduino 交 个朋友,一起走进创客世界!

扫一扫,看视频

6 产品创意

1. 头脑风暴

童年都有创造发明的梦想!有的想发明一个智能机器人替自己写作业,有的想发明一个机器人陪自己玩,还有的想发明一个帮爸爸妈妈干家务、帮大人开车的机器人……生活在这样一个智能时代,我们童年的梦想正在逐渐变成现实!

○ 想一想 你和小伙伴们的童年有着怎样创造发明的梦想?想让机器人做什么?有的 已经变成实现了吗?填写在表 1-1 中。

表 1-1 列举创造发明的梦想

- 说一说 智能机器人的"智能"体现在哪儿?目前流行的用来实现创意设计的开源 硬件有 Arduino、Micro:bit、树莓派等,如图 1–1 所示。
- 看一看 想要实现 DIY 智能机器人的梦想,可以从学习 Arduino 开始。Arduino 主 板有 UNO、ZERO、MEGA、MINI、NANO、ZYduino UNO 和 DFRduino UNO 等 许多种版本,图 1-2 所示为本书案例用到的一些版本。

Arduino主板

Micro:bit主板 图 1-1 各种主板

树莓派主板

Arduino ZERO

Arduino UNO

ZYduino UNODFRduino UNO图 1-2不同版本的 Arduino 主板

提示

Arduino 主板的版本多样,虽然外观上有区别,但是原理和操作 方法是一样的,甚至大部分管脚、接口也是一致的。

2. 思路分析

俗话说"工欲善其事,必先利其器"。在制作作品之前,需要对创意想法进行梳理,确定用到的传感器,弄清作品的工作流程和原理,然后连接电路,编写、上传程序等。 例如,点亮 LED 灯,需要连接一个 LED,在程序的控制下,通过 Arduino 主板给 LED 输出高电平,使灯亮起来,其工作流程如图 1-3 所示。

图 1-3 LED 灯工作流程

○ 查一查 能为 Arduino 编写、上传程序的免费软件有很多,如表 1-2 所示,请通过 网络查询了解一下它们的特点。

编程软件	特点
Arduino IDE	纯代码编程,需要有C语言编程基础
Ardublock	图形化编程,需依托 Arduino IDE,同步显示,可脱机运行
S4A	图形化编程,仅上传通信程序,无代码,不可脱机运行
Mixly	图形化编程,上传程序,实时显示,可脱机运行

表 1-2 Arduino 编程软件的特点

○ 定一定 根据 Arduino 编程软件的特征分析,结合自己的程序设计水平,你准备选定的编程软件是:_____,理由是:_____

_____。当然,本书大部分实例采用了 Mixly 软件。

○ 想一想 主板管脚的输出电压为 5V, 普通 LED 的额定电压为 3V, 主板能直接给 LED 供电吗? 如果不能, 该怎么办?

皇 规划设计

1. 创客流程

通过分析,"智造"作品的一般流程为:创意构思、分析→规划线路、设计外观 →连接器材、编写程序→上传调试、修改完善等。

2. 线路规划

将发光二极管 LED 的长脚连接在主板接地管脚 8 上,短脚通过串联一个 220 Ω 的 电阻连接在 GND 上,通过控制管脚 8 输出高电平,使 LED 发光,电路规划如图 1-4 所示。 一般情况下发光二极管的额定电流为 20mA,通过计算,在此电路上需串联一个 220 Ω 的电阻,起到限流作用,防止 LED 烧坏。后面课程中用到的有些传感器模块,在生产 时已经考虑到了额定电流的问题,无须再串联电阻,可直接使用。

图 1-4 点亮 LED 接线图

<u> 命</u>制作准备

1. 认识 Arduino 主板

Arduino 降低了创意电子设计的门槛,使越来越多的人加入开发队伍。从 Arduino 出现至今,已经设计出很多不同的版本,用于不同的场合。以 Arduino UNO 为例,主板结构如图 1–5 所示。

图 1-5 Arduino 主板结构

- 处理器 用于完成运算、控制和存储等任务。
- 管脚 管脚 0~13 为数字输入 / 输出端口。管脚 A0~A5 为模拟输入端口,也可以作 为数字输入 / 输出端口。
- ♡ 串口 负责主板与计算机之间的通信,用 USB 转串口线连接。

2. 认识 Mixly 编程软件

使用 Arduino 制作创意电子作品,需要使用编程语言。听到编程小伙伴们是不是觉得很难?其实,我们试着用 Mixly 这款很棒的图形化编程软件,就没有那么 难啦!

Mixly 的中文名字为米思齐,它无须安装,下载解压后直接就能使用。本书使用的 是 Mixly 0.999 版本,界面如图 1-6 所示。

图 1-6 Mixly 软件界面

- 模块区 提供丰富的模块供编程选择,单击模块名字,右侧会出现该类别所有的指 令积木。
- 图形化编程区 拖曳指令积木到此区域,搭建程序。
- 源代码显示区 源代码显示区域是不能进行程序修改的。当然,你可以单击图形化 编程区域上端的"代码",进入代码编写模式。
- ♡ 功能菜单区 可以方便新建、打开、保存程序文件,设置 COM □,选择主板类型, 显示串□监视信息和向主板上传文件等操作。
- 提示区 向用户反馈信息的场所。例如,显示编译或上传是否成功,如果失败是什么原因,或者导入库是否成功等信息。

3. 了解发光二极管

发光二极管简称 LED,具有单向导电性,即只允许电流从正极流向负极,接反了就不亮。常见的单色 LED 长脚为正极,短脚为负极,如图 1–7 所示。

图 1-7 各种 LED

4. 了解电阻

电阻不分正负极,起到限流作用,如图 1-8 所示。例如,一般 LED 可以串接 220 Ω~3k Ω 的电阻,阻值越大,亮度越低。

图 1-8 电阻

5. 了解数字输出指令积木

数字输出指令积木是专门用来控制数字输出类传感器的。如图 1-9 所示,在"输入/输出"模块中可以找到数字输出积木指令。例如,LED 模块是典型的数字输出传感器,输出"高"给 LED 模块,LED 就会亮;输出"低"给 LED 模块,LED 就会灭。

图 1-9 数字输出指令积木

6. 选择工具材料

工具:无。

材料:制作点亮 LED 所需材料见表 1-3。

表 1-3	点亮 LED 材料	清单
-------	-----------	----

材料	数量	材料	数量
Arduino 主板	1 块	方形 USB 转串口线	1 根
发光二极管 LED	1个	双母头杜邦线	1 根
220Ω 电阻	1个	公母头杜邦线	1 根
	/		

🔆 技术实施

制作点亮 LED 电子作品,完成电路的连接,安装 USB 转串口电路驱动程序,然 后使用 Mixly 编写、上传程序。有点迫不及待的你,快和我们一起动手吧!

安装驱动

Arduino 主板第一次通过 USB 数据线与计算机连接,为了让主板与 Mixly 之间进行通信,需要安装驱动程序。

01 连接主板和计算机 将 USB 接口与计算机连接,另一端串口接在主板上,主板的 电源指示灯 ON 就会亮,如图 1–10 所示。

图 1-10 连接 Arduino 主板和计算机

02 安装 USB 转串口驱动 解压下载的 Mixly0.999 文件,在 arduino-1.8.9 文件夹中 找到 drivers,运行其中的 dpinst-amd64.exe 文件。安装完成后,按图 1-11 所示 操作,如果有 Arduino Uno (COM3),就说明驱动程序安装成功了。

1. 牛刀小试

聪明的你,当读到这儿时,说明前面的实验你已经完成了。接下来,请你试着把 管脚 8 上的杜邦线改插在管脚 13 上,想一想,指令积木需要做何调整?对,指令积木 中的管脚值要设置为 13。上传程序后,观察 LED 亮的同时,主板上的哪个灯也亮了? 对, 主板上的 D13 指示灯亮啦! 思考一下,这是为什么呢?

实验不成功的可能原因大致归纳如下: LED 长短脚接反; 接线管脚号与搭建积木 程序中的管脚设置不一致。

2. 创意升级

亲爱的小创客们,到此我们的第1个作品就算制作完成了,你是不是觉得当个小 创客其实挺容易的!只不过,我们才点亮了一个 LED 灯,并没有什么创意。接下来, 你可以试着设计制作一个 LED 创意造型作品!展开你想象的翅膀吧!例如,完成本课 开头的心形图案灯,拼制 LED 发光字、广告图案等。

第2课 门铃制作超简单

古时候,大户人家在大门上装有装饰性的门环,叫门的人用门 环拍击环下的门钉发出较大的响声,具有现代门铃的作用,以提示 主人来客来访。现在,门铃各式各样,趋于智能化、人性化,其作 用也不仅仅局限于叫门。下面我们就来动手制作一个电子门铃!

1. 头脑风暴

家中最常见的电子门铃是门外的按钮被人按动后,门铃就嘀嘟地响几声,也有播放一段电子音乐的;后来演变到客人可以在门口与楼上的主人讲话,验明身份后主人

再给客人开门。

○ 想一想 铃有以示来人、提醒关注等传达信息的作用,现在的铃不再单纯地安装在 门上,也不再是普通的铃。想一想,生活中还有哪些场景用到它,说说它们的作用, 并填写在表 2-1 中。

表 2-1	列举各式各样的铃
-------	----------

应用场景	功能
房门口	
病房里	
学校里	

○ 说一说 早前去一家店铺,找遍门口也不见有门铃的按钮,傻等了片刻忍不住推了 一下门,只听得门内嘀嘟响了两下,主人从内室出来。这种门铃是用了传感器代 替按钮开关。说一说,生活中你还见过什么样的门铃?

2. 思路分析

俗话说"磨刀不误砍柴工"。在制作电子门铃之前,需要分析一下门铃的原理, 确定用到的器件,然后连接电路,编写、上传程序等。普通电子门铃的结构,一般包 括集成电路芯片、蜂鸣器或喇叭、电池以及安装在门外的按钮。当按下按钮时,主板 向蜂鸣器供电,发出蜂鸣声或音乐,延时播放一段时间后,重新进入待机状态,其工 作流程如图 2-1 所示。

图 2-1 电子门铃工作流程

制作门铃的创意有很多,刘小豆同学准备用振动传感器代替普通按钮,发声设备 用有源蜂鸣器,制作一个智能门铃。当人触碰"门"产生振动时,Arduino 就会"指挥" 蜂鸣器发出声音。

○ 查一查 制作电子门铃可以用有源蜂鸣器或无源蜂鸣器,请上网搜索它们的发声 原理。

查			
_			
查			

○ 选一选 请帮他选一选可能要用到的指令积木,找一找它们属于哪个模块,并说说 各指令积木的功能。

1. 线路规划

借助扩展板,将振动传感器的3P连接线插在扩展板的2号排针上,当它受到振动时, 向主板的2号管脚输入低电平(振动传感器默认输入高电平);将有源蜂鸣器连接在扩 展板的7号排针上,主板向管脚7输出高电平,使蜂鸣器发出声音,电路规划如图2-2 所示。

图 2-2 智能门铃接线图

2. 外观设计

分析得知,门铃发展到今天,形式各种各样,但总的来说,无外乎叮咚声变成了 播放音乐,按钮换成了各类传感器等,又或者增加了视频、防盗等功能。智能门铃的 种类有很多,你打算将智能门铃设计成什么样?做一个这样的智能门铃模型需要准备 哪些材料呢?

♡ 画一画 对于智能门铃的外观设计,请画出你的构思。

○ 想一想 你考虑过用别的传感器代替按钮吗?如用人体红外热释传感器、声音传感器等设计门铃。用无源蜂鸣器发声,又或者用灯代替铃声,使铃声不再单调,可以吗?

金制作准备

1. 认识扩展板

现在网上很容易购买到各种扩展板,如图 2-3 所示。它们把 Arduino 的端口扩展 成 3P 接口,直插 3P 传感器模块,再也不用担心连接多个传感器时出现电源接口不够 用的情况,而且线路整洁;数字、模拟端口采用不同的彩色排针,接口顺序、标识等 让你一眼就辨别出它的功能;与 Arduino 主板插拔方便,用户只需专注实现自己的创 意想法。

图 2-3 扩展板示意图

2. 了解智能控制系统

一个简单的智能控制系统由输入、控制和输出三部分构成,其工作流程如图 2-4 所示。输入是通过各种传感器来实现的,它们将获取的信息变换成电信号或其他所需 形式的信息传输给控制器; Arduino 控制器好比人的大脑,做出反应和处理; 最后通过

执行器输出,主要有声、光(LED)、动(直流电机、舵机)等输出表现形式。

图 2-4 智能控制系统工作流程图

3. 了解传感器

传感器就像是人的眼睛、鼻子、耳朵或是动物的触角、声呐,它们可以将环境中的声、 光、电、磁、温度、湿度等物理量转化为控制器可以处理的电信号。

传感器分为模拟和数字两种类型,数字传感器通常标注符号 D,只能返回 1、0 两种信息,或者称之为高、低电平,如按钮模块、振动传感器模块等。而模拟传感器可以返回更多的信息,通常标注符号 A,例如光线传感器能告诉 Arduino 光线明暗的程度,数据范围为 0~1023。

4. 了解振动传感器

振动传感器是一种数字输入传感器。当传感器被振动时会向主板输入信号 0,保持 平静时输入信号 1。根据厂家不同,也有情况相反的。后面我们会讲到用"串口"指令 积木进行测试。常见的振动传感器模块如图 2-5 所示。

图 2-5 各种振动传感器

5. 了解蜂鸣器

蜂鸣器模块是一种一体化电子发声装置,创客作品中经常用到的包括有源蜂鸣器 和无源蜂鸣器两种类型,这里的"源"不是指电源,而是指震荡源。 ○ 有源蜂鸣器 有源蜂鸣器内部带震荡源,只要通电就会叫,即只需给高电平就能发出蜂鸣声,程序控制方便。不同品牌外形不同,如图 2-6 所示。

有源蜂鸣器(3针脚)

图 2-6 有源蜂鸣器

○ 无源蜂鸣器 无源蜂鸣器内部不带震荡源,如果只给高电平,则无法令其鸣叫。但通过"执行器"模块中的"播放声音"指令积木程序,可以控制声音的频率,做出悦耳的音乐效果。不同品牌外形不同,如图 2-7 所示。

6. 了解数字输入指令积木

数字输入指令积木,专门用来把数字类传感器获取的数据传给主板,它只能输入 数字信号。如图 2-8 所示,在"输入/输出"模块中可以找到数字积木指令。例如, 振动传感器模块是数字输入传感器,当振动时,输出 0,然后通过"取非"操作,给主 板高电平,蜂鸣器发声。

图 2-8 数字输入指令积木

7. 选择工具材料

工具:彩笔、剪刀、锥子、胶枪、胶水等。

材料:制作智能门铃所需材料见表 2-2。

表 2-2 智能门铃材料清单			
材料	数量	材料	数量
Arduino 主板	1 块	扩展板	1 块
电源、连接线	1套	USB 转串口线	1 根
有源蜂鸣器模块	1个	振动传感器模块	1个
3Pin 杜邦线	2 根	扎带	3 根
纸盒	1 个		

[♀] 技术实施

用振动传感器、有源蜂鸣器制作智能门铃,为使线路整洁,借助扩展板、3Pin 杜邦线等完成电路的连接,然后使用 Mixly 软件编写、上传程序。

连接电路

使用扩展板和 3Pin 杜邦线,完成 Arduino 主板、振动传感器、蜂鸣器等电路的连接。 01 将扩展板插入主板 将扩展板背面针脚对准主板的管脚,插入主板。

02 连接传感器和扩展板 杜邦线与端口颜色对应,将振动传感器插入 3P 接口 2,有 源蜂鸣器插入 3P 接口 7,连接效果如图 2-9 所示。

图 2-9 连接传感器和扩展板效果图

03 连接主板和计算机 通过 USB 转串口线,将主板与计算机连接,实现主板和计算 机之间的通信。

<u>」</u> 二二二、测评提高

1. 牛刀小试

制作完成后,插上电源,合上盒盖,用手指轻敲盒盖,从小孔内传出蜂鸣声,一 个智能门铃就完成了,如图 2-14 所示。如果没有发出蜂鸣声,不要着急,请对着操作 步骤逐步查看。

聪明的你,如果顺利完成了前面的实验,请试着用LED灯模块替换蜂鸣器,智能"门灯"能正常工作吗?用无源蜂鸣器替换有源蜂鸣器,门铃还能正常工作吗?这是为什么,请动手做一做,验证下你的判断吧!

图 2-14 测试作品

2. 创意升级

亲爱的小创客们,在家里装一个电子门铃如果只是叫门,不免有点单调,你不妨 发挥想象,利用不同的传感器制作出不一样的智能门铃!例如增加监视防盗功能等。 想到了做不出来也没关系,后面我们会慢慢接触到各种传感器。