

虚拟现实技术初探

项目导读

虚拟现实(virtual reality, VR)技术,又称灵境技术,是20世纪发展起来的一项全 新的实用技术。虚拟现实概念源于科幻小说,由任天堂等游戏厂商开启商业化之路。随着 社会生产力和科学技术的不断发展,各行各业对虚拟现实技术的需求日益旺盛。VR 技术 也取得了巨大进步, 并逐步成为一个新的科学技术领域。

任务 1.1

认知虚拟现实概念

情境描述

为了纪念中国航天事业成就,发扬中国航天精神,国务院将每年4月24日设立为"中 国航天日",第七个"中国航天日"主题是"航天点亮梦想"。张华作为天文爱好者,去商 场体验了针对"航天日"的 VR 天空之旅活动,用 Pico Neo3 设备过了一把火星行走之瘾。 同时、张华同学对虚拟现实技术产生了浓厚的兴趣和敬畏之心、计划系统地了解一下、针 对自己感兴趣的 VR 主题进行详细探究并制作 "VR 主题简报"。你可以帮助他选取一个 VR 主题,并完成简报的制作吗?

(公) 学习目标

素质目标	提升科技强国的意识,激发探索发现的热情
知识目标	 了解虚拟现实技术和元宇宙之间的关系; 熟识虚拟现实的基本概念; 知晓虚拟现实技术的性质和不同分类
能力目标	1. 能够将虚拟现实概念进行逻辑梳理; 2. 能够针对重点概念进行深度探究,并制作简易报告书

4学时。

知识加油站

国内知名 VR 公司概述

一、虚拟现实是什么

1. 概念解读

虚拟现实技术是以计算机技术为主,利用并综合三维图形技术、多媒体技术、仿真技术、传感技术、显示技术、伺服技术等多种高科技的最新发展成果,通过计算机等设备产生一个逼真的三维视觉、触觉、嗅觉等多种感官体验的虚拟世界,从而使处于虚拟世界中的人产生一种身临其境的感觉。在虚拟世界中,人们可直接观察周围世界及物体的内在变化,与其中的物体进行自然的交互,并能实时产生与真实世界相同的感觉,使人与虚拟环境融为一体。

与传统的模拟技术相比,虚拟现实技术的主要特征是:用户能够进入一个由计算机系统生成的交互式的三维虚拟环境中,可以与之进行交互。通过参与者与虚拟环境的相互作用,并利用人类本身对所接触事物的感知和认知能力,启发参与者的思维,全方位地获取事物的各种空间信息和逻辑信息。虚拟现实智慧城市正是基于计算机建模的典型案例,如图 1.1 所示,在虚拟城市环境中,体验者可与虚拟环境之间产生丰富的交互行为。

图 1.1 虚拟现实智慧城市

2. 虚拟现实技术的性质

1993年,美国科学家 G. Burdea 和 C. Philippe 提出虚拟现实技术特征三角形,即 3I 特征: immersion (沉浸性)、interaction (交互性)、imagination (构想性),如图 1.2 所示。

图 1.2 虚拟现实的 3I 特征

沉浸性是指利用计算机产生的三维立体图像,让人置身于一种虚拟环境中,就像在 真实的客观世界中一样,给人一种身临其境的感觉。

交互性是指在计算机生成的这种虚拟环境中,人们可以利用一些传感设备进行交互,感觉就像在真实客观世界中一样。例如,当用户用手去抓取虚拟环境中的物体时,手就有握东西的感觉,而且可以感觉到物体的重量。

构想性是指虚拟环境可使用户沉浸其中并获取新的知识,提高感性和理性认识,从而使用户深化概念、萌发新的联想,启发人的创造性思维。

虚拟现实领域专家赵沁平院士提出,以上所述的虚拟现实 3I 特征属于虚拟现实 1.0 时代。随着虚拟现实技术应用领域的不断扩展和深化,特别是数字孪生和互联网 3.0 对虚拟现实技术提出了一系列新的创新需求,推动了虚拟现实进入 2.0 阶段。要支持互联网 3.0,只具有沉浸感、交互性、构想性的虚拟现实 1.0 难以胜任,必须创新发展为具有 5IE 特征的虚拟现实 2.0。5IE,即沉浸感(immersion)、交互性(interaction)、构想性(imagination)、智能化(intelligentize)、互通性(interconnection)和演变性(evolutionary)。

3. 推动虚拟现实产业发展的条件

1)技术——第一动力

芯片、显示、光学、交互等关键技术持续迭代,推动产品升级,提升用户体验满意度。虚拟现实专属芯片(如高通骁龙 XR2)的发展,极大地提高了硬件的算力。设备从需要借助计算机或游戏主机算力的 PC VR 或 VR 盒子,进化到一体机形式,便携性和性能均大幅提升。同时,虚拟现实显示设备的分辨率和刷新率均得到优化,极大地提升了显示的清晰度和流畅性。

2) 生态——加速器

从计算机到智能手机再到虚拟现实/增强现实,体现了人机交互方式从图文界面到三维空间、从静态到动态、从命令式到自然交互的变革。近年来科技类大厂纷纷入局虚拟现实产业,扩大了产业发展的深度和广度,并通过完善生态,引导内容与硬件多元化协同,实现了产业的良性发展。

3)资本——助推力

虚拟现实市场的增长可增强投资信心,提升融资并购的活跃度;同时,资金的注入也为产业发展提供了研发和生产资源。2014年,Facebook以20亿美元收购Oculus,极

大地推动了虚拟现实技术的产业化发展。自此,业界对于虚拟现实创业公司的风险投资逐步增加,如创业公司 Survious 已融资 200 万美元、Jaunt 融资 2800 万美元、Virtuix 融资 270 万美元。2021 年,字节跳动以 90 亿元人民币收购 Pico,也助推了产业迈进和资本活跃度。

4) 政策——发展引领

我国高度重视虚拟现实、增强现实的技术产业发展,结合产业发展的客观规律,在产业布局、顶层设计、应用发展和核心技术攻关等阶段,通过一系列相关政策,不断支持鼓励虚拟现实赋能各产业和重点场景,为我国虚拟现实产业的发展保驾护航。在"十四五"期间,虚拟现实和增强现实产业被列为数字经济重点产业,继续释放政策红利。

5)标准——夯实底座

我国不仅通过政策红利引领企业发展,也正在加快构建推动高质量发展的标准体系。以标准助力高技术创新,加快虚拟现实/增强现实硬件、平台、应用等关键环节、关键领域、关键产品等的技术攻关和标准研制应用。产业经过多轮升级迭代,技术和产品逐步迈入成熟期,也正式进入标准制定的黄金时期。

二、虚拟现实技术的分类

根据分类逻辑的不同,虚拟现实技术可以依据呈现特征、技术类型和市场特征进行分类。

1. 按呈现特征分类

依据虚拟现实呈现特征进行分类,可大致分为以下三类。

1)狭义的虚拟现实技术

VR 技术特指狭义的虚拟现实技术,与真实环境尽量脱节,利用 VR 设备模拟产生一个三维的虚拟空间,提供视觉、听觉、触觉等感官的模拟,让用户暂时忘却身处的环境,为其提供身临其境般的感官体验。狭义的虚拟现实技术为用户提供了完全脱离真实环境的场景,如图 1.3 所示,用户虽然身处狭小、封闭的室内空间,但通过 VR 设备却可以在广阔、曼妙的自然环境中遨游。

图 1.3 狭义的虚拟现实技术使用场景

简而言之,狭义的虚拟现实技术就是"无中生有",在理想的虚拟现实体验中,用 户只能感受到虚拟世界,无法看到真实的环境。

2)增强现实技术

增强现实(augmented reality, AR) 技术是 VR 技术的延伸, 能够把计算机生成的 虚拟信息(物体、图片、视频、声音、系统提示等)叠加到现实中并与人实现互动。 AR 技术强调虚拟信息和真实场景的结合。如图 1.4 所示,工程师在佩戴了 AR 眼镜之后, 不仅能看到周围环境,还可以和虚拟的屏幕信息发生交互。

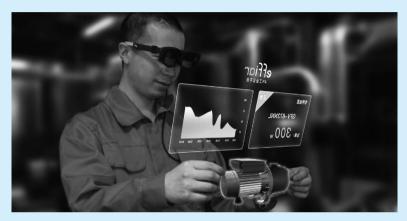


图 1.4 AR 技术使用场景

简而言之, AR 技术即"锦上添花"。在 AR 技术中, 用户既能看到真实世界, 又 能看到虚拟事物。通常而言,虚拟事物是和真实世界相关联的,是对真实世界的强调、 优化和提示。

3)混合现实技术

混合现实 (mixed reality, MR) 技术是 AR 技术的升级,将虚拟世界和真实世界合 成一个无缝衔接的虚实融合世界,其中的物理实体和数字对象满足真实的三维投影关系。 如图 1.5 所示, 汽车轴承模型以虚拟成像的形式展示, 同时在地面上还有投影, 和真实 物体相比"真假难辨"。

简而言之, MR 即"实幻交织"。在 MR 中, 用户难以分辨真实世界与虚拟世界的 边界。

2. 按技术类型分类

依据虚拟现实技术类型进行分类,可大致分为以下四类。

1)桌面式虚拟现实技术

采用立体图形技术,在计算机屏幕中产生三维立体空间的交互场景,用户通过输入 设备与虚拟世界交互。

2)分布式虚拟现实技术

将多个用户通过计算机网络连接在同一个虚拟世界, 共同观察和操作。

图 1.5 MR 技术使用场景

3) 沉浸式虚拟现实技术

将用户的听觉、视觉和其他感觉封闭起来,提供完全沉浸的体验,使用户有一种置 身于虚拟境界之中的感觉。

4)增强式虚拟现实技术

将真实世界的信息叠加到虚拟现实世界中, 使真实世界与虚拟现实世界融为一体。

3. 按市场特征分类

依据虚拟现实市场特征进行分类,可大致分为以下两类。

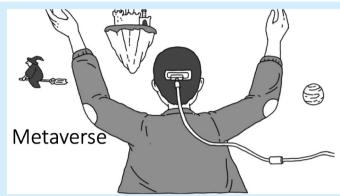
1)消费级市场

消费级市场集中在视频、游戏场景。2014年,影视作品开始登陆虚拟现实平台,《星际穿越》在美国四家影院推出 Oculus Rift 虚拟现实头盔特别版,让观众融入浩瀚无边的太空旅行;圣迭戈国际动漫展上,观众通过 Oculus Rift 可以欣赏《环太平洋》和《X战警:逆转未来》的片段。2015年,第一部完全使用虚拟现实摄影机拍摄的长篇电影在巴尔的摩开拍;北京兰亭数字科技有限公司制作的中国第一部虚拟现实电影《活到最后》也已完成。而游戏领域,虚拟现实技术带来的沉浸感使得玩家们体验逼真,体验感十足。如图 1.6 所示,在虚拟现实技术的加持下,体验者可以获得翱翔太空、在不同星球之间穿梭的沉浸式体验,虚拟现实游戏让星际旅游不再是梦。

2) 企业级市场

虚拟现实技术应用广泛,其中在军事训练中应用相当成熟。军事仿真训练是虚拟现实技术主要的应用场景之一,细分类别有特殊环境仿真操作、大型机械仿真培训、军事模拟沙盘、室内射击仿真训练等。此外,在建筑、教育、设计、医疗、展览等领域,虚拟现实技术已有一定程度的应用。如图 1.7 所示,将虚拟现实技术应用于机械专业仿真培训,可为学习者提供自主性强且可重复的实践环节,培训效率优于传统教学模式。

图 1.6 虚拟现实游戏场景(To C 应用)


图 1.7 虚拟现实技术的机械仿真培训场景(ToB应用)

三、虚拟现实技术和元宇宙的关系

1. "元宇宙"的概念来源

元宇宙 (metaverse)的概念源于尼尔·斯蒂芬森 (Neal Stephenson)的著作《雪崩》 (Snow Crash),如图 1.8 所示。《雪崩》故事发生在 21 世纪的洛杉矶,距离全球经济崩 溃已有数年, 洛杉矶不再是美国的一部分, 成为财团、黑手党、私人机构等势力控制的 信息都市,类似于一种无政府资本主义;物价飞涨、美元贬值、虚拟货币泛滥;人类在 现实世界外构建了一个"超元域",只要通过公共入口连接,就能以"化身"的形象进 入超元域。

虚拟现实和元宇宙 之间的关系

图 1.8 《雪崩》描述的世界

2. "元宇宙"众家说

Roblox 公司 CEO 戴夫·巴祖基(Dave Baszucki)是元宇宙忠实的"传教士",他与《玩家一号》和《玩家二号》的作者恩斯特·克莱恩(Ernest Cline)合作了很多活动。事实上,Roblox 是一个多人在线创作游戏平台,用户可以自行创作游戏作品,从FPS、RPG到竞速、解谜,都可以由玩家操控的圆柱和方块形状组成的小人们参与和完成。Baszucki认为,真正的元宇宙有8个不同的特点,分别是身份、朋友、沉浸感、低延迟、多元化、随地、经济系统和文明。

也有学者认为"元宇宙"的核心可以归纳为如下4点。

- (1) 玩家具有改造"元宇宙"的能力,数字资产具有"唯一性"。
- (2) 有非常强的沉浸感和体验感。
- (3) 具有稳定的经济体系并且与现实联通。
- (4) 容纳大量的用户,有较强的互动体验和社交性。

3. "元宇宙"的技术体系

交互技术是元宇宙的六大底层技术之一(见图 1.9),虚拟现实技术作为元宇宙交互技术的核心内容,打通了现实与虚拟,为沉浸式体验提供了快速、便捷的互动方式以及 更真实的体验感。由此而见,虚拟现实技术是元宇宙的必要非充分条件。

图 1.9 元宇宙六大关键技术体系

在虚拟现实广义范围内,有很多有趣的故事和事物,每个概念元素均展示出虚拟现实 领域丰富的呈现形式。请选取一个自己感兴趣的主题进行探究。

步骤二 收集、整理内容

张华同学对"沉浸声场"的相关概念非常感兴趣,准备将收集的资料整理到"VR主 题简报"模板中,模板如图 1.10 所示(根据所选探索主题,自行填充内容)。

步骤三 完成内容制作

完成"VR主题简报"的内容制作,如图 1.11 所示。

图 1.10 "VR 主题简报"模板

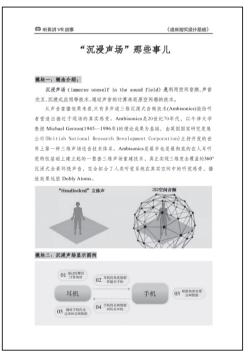


图 1.11 "VR 主题简报"范例——沉浸声场

任务思考

我们为什么需要虚拟现实技术呢?这项技术的出现是时代进步的必然选择吗?

人类对虚拟世界的追求是一种本能行为。人们在日常生活中的走神、做梦、追剧、 观影都属于与虚拟事物的连接。据数据显示,人们每天走神的次数大约有两千次,大脑 15% ~ 25% 的时间都在开小差。那么这段大脑放空的时间,会发生什么微妙的变化呢? (感兴趣的读者可以阅读《虚拟现实——从阿凡达到永生》。)

除了本能使然、虚拟现实技术为用户带来了沉浸式的娱乐体验、成为刚需产品、推动

娱乐产业发展。同时,虚拟现实技术在工业、医学等科学研究中也应用广泛,已成为继理 论计算和实验验证之后的第三种科学验证手段。

虚拟现实技术带给人的思考很多,请通过电影《头号玩家》中的场景展开联想:假设 在未来的某一天,人们可以随时随地切换身份,自由穿梭于物理世界和数字世界,在虚拟 空间和时间节点所构成的"元宇宙"中学习、工作、交友、购物、旅游等,这种生活值得 我们选择吗?如果认为值得,那么又会如何分配真实世界和虚拟世界的占比呢?请列举你 一天的行程表。

任务 1.2 绘制虚拟现实技术发展史图谱

惊情境描述

2022年北京冬季奥运会运用了多项虚拟现实相关技术,"智能化创编排演一体化系统" 模拟开幕式全流程,提前对演员、灯光、音乐、烟花、奥运火炬、转播机位等全要素进行 全方位"排兵布阵": 自由视角、子弹时间、沉浸式观赛、虚拟现实互动等为广大观众带 来了多种创新观赛体验;虚拟现实和数字仿真技术融合应用,为参赛运动员提供逼真的赛 道训练环境,实现了个性化、智能化的训练方案。虚拟现实技术从多个维度助力体育赛事 的落地和呈现, 让老百姓更加真切地感受到体育竞技的魅力。

如今、虚拟现实技术在体育赛事等多领域大放异彩、是经历了多阶段的理论完善和应 用尝试的, 每个阶段都有值得被纪念的事件和人物。请以时间为线索, 梳理虚拟现实技术 的发展历史, 绘制虚拟现实技术发展图谱。

素质目标	培养逻辑思考力、学习自驱力、历史敬畏之心
知识目标	1. 掌握虚拟现实技术的发展历程; 2. 了解虚拟现实技术之父的相关信息
技能目标	1. 学会提取关键信息; 2. 学会用时间轴工具进行信息呈现; 3. 掌握时间轴的绘制技巧

建议学时

4学时。