
  在第2章中,我们从代数学的角度探讨了向量空间和线性变换,强调了矩阵在其中的作

用。本章将从几何学的角度探讨这些概念,以便直观地理解它们。几何学需要在向量空间

中建立长度和角度的概念。为了能在向量空间中引入这两个概念,数学家们巧妙地引入了

内积。内积将向量空间中的代数学和几何学紧密地联系了起来。

3.1 范数

在解析几何中,向量是始于原点的有向线段,它的长度是原点到有向线段终点的距离。
在向量空间中,向量的长度或大小用一个称为范数的函数来度量。

定义3.1(范数) 设VV是向量空间,如果VV上定义的函数

‖·‖:VV→RR, x ‖x‖
 

(3.1)
对于∀λ∈RR,∀x,y∈VV,满足以下3个条件。

(1)
 

正定性:
 

‖x‖≥0,且‖x‖=0⇔x=0。
(2)

 

齐次性:
 

‖λx‖=|λ|·‖x‖。
(3)

 

三角不等式:
 

‖x+y‖≤‖x‖+‖y‖。
那么,称函数‖·‖为向量空间VV上的范数(norm)。

定义3.1是在一般的向量空间上定义范数的,但机器学习的应用中只考虑有限维向量

空间RRn 上的范数。对于x∈RRn,用下标表示向量的元素(分量),比方说xi 是向量x 的第i
个元素。

下面,我们来看RRn 上3种常见的范数。
(1)

 

L1 范数:
 

对于x∈RRn,x 的L1 范数被定义为

‖x‖1=∑
n

i=1
|xi|, (3.2)

L1 范数也称为曼哈顿范数。图3.1(a)显示了RR2 中所有‖x‖1=1的向量x 的终点,形成

了两条对角线分别在两条坐标轴上的菱形,其上任一点的横、纵坐标绝对值之和均为1。
(2)

 

L2 范数:
 

对于x∈RRn,x 的L2 范数被定义为

‖x‖2= ∑
n

i=1
x2i = xTx, (3.3)

L2 范数也称为欧几里得(Euclidean)范数。图3.1(b)显示了RR2 中所有‖x‖2=1的向量x
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的终点,形成了以原点为圆心的单位圆。
【注3.1】 本书中如果没有特别说明,使用的范数默认为L2 范数。

(3)
 

L∞范数:
 

对于x∈RRn,x 的L∞范数被定义为

‖x‖∞ =max
1≤i≤n

|xi|。
 

(3.4)

L∞范数也称为无穷范数。图3.1(c)显示了RR2 中所有‖x‖∞=1的向量x 的终点,形成了

以原点为中心、两组对边分别平行于两条坐标轴的正方形,其上任一点的横、纵坐标绝对值

的最大值均为1。

图3.1 范数为1的向量的终点集

事实上,以上3种范数可以统一为如下形式的Lp 范数

‖x‖p = ∑
n

i=1
|xi|p  

1
p, p=1,2,…。 (3.5)

当p=1时,式(3.5)表示L1 范数;
 

当p=2时,式(3.5)表示L2 范数;
 

当p→∞时,式(3.5)
表示L∞范数。

3.2 内积

内积可以用来计算向量的长度和两个向量之间的距离,也可以计算两个向量之间的角

度,进而确定向量之间是否正交。我们对内积的认识总是从点积开始的。

3.2.1 点积

对于∀x,y∈RRn,x=[x1,x2,…,xn]
T,y=[y1,y2,…,yn]

T,

xTy=∑
n

i=1
xiyi (3.6)

称为这两个向量的点积(dot
 

product)。点积的结果是一个数,所以又称为标量积(scalar
 

product)。
点积是一种特殊的内积,而内积是更加一般化的概念。

3.2.2 一般内积

回忆线性映射的定义(参见2.4节),它是保持向量的加法和数乘运算的一元映射。把

线性映射Φ(x)推广到二元,就是双线性映射。
定义3.2(双线性映射) 设VV是向量空间,双线性映射Ω:VV×VV→RR将VV中的两个向
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量映射为一个实数,它对于每个参数位置都是线性的,即对于∀x,y,z∈VV,∀λ,μ∈RR,有
Ω(λx+μy,z)=λΩ(x,z)+μΩ(y,z), (3.7)

Ω(x,λy+μz)=λΩ(x,y)+μΩ(x,z)。
 

(3.8)
式(3.7)表明Ω 关于第一个参数位置是线性的;

 

式(3.8)表明Ω 关于第二个参数位置是线

性的。
定义3.3(对称和正定) 设VV是向量空间,Ω:VV×VV→RR是双线性映射,则
(1)

 

若∀x,y∈VV,Ω(x,y)=Ω(y,x),则称Ω 为对称的。
(2)

 

若∀x∈VV\{0},Ω(x,x)>0,且Ω(0,0)=0,则称Ω 为正定的。
定义3.4(内积与内积空间) 设VV是向量空间,Ω:VV×VV→RR是双线性映射,则
(1)

 

对称正定的双线性映射Ω:VV×VV→RR称为VV上的内积(inner
 

product),内积通常

记为<x,y>。
(2)

 

(VV,<·,·>)称为内积空间或带有内积的(实)向量空间。若内积就是点积,则称

(RRn,<·,·>)为欧几里得空间,简称欧氏空间。
【例3.1】(非点积的内积)
设VV=RR2,定义

<x,y>=x1y1-(x1y2+x2y1)+2x2y2,
则<·,·>是内积但不是点积。其证明作为练习留给读者。

3.2.3 对称正定矩阵

对称正定矩阵在机器学习中起着重要的作用,而且可以用来定义内积。第4章的矩阵

分解将涉及对称正定矩阵。
设VV是n 维向量空间,带有内积<·,·>:VV×VV→RR,一个有序基为B=(b1,b2,…,

bn),则∀x,y∈VV都可以写成基向量的线性组合,即∃λi,μj∈RR,i,j=1,2,…,n,使x=

∑
n

i=1
λibi ∈VV,y=∑

n

j=1
μjbj ∈VV。 由于内积的双线性性质,对∀x,y∈VV有

<x,y>=<∑
n

i=1
λibi,∑

n

j=1
μjbj>=∑

n

i=1
∑
n

j=1
λi<bi,bj>μj =

 

x�TAy�,

其中A=[<bi,bj>]n×n,x�,y� 分别是x,y 关于基B 的坐标向量。这意味着<·,·>可由A
来确定。内积<·,·>的对称性意味着A 是对称矩阵。此外,由内积的正定性知,

∀x∈VV\{0}, 有xTAx>0。
 

(3.9)

  定义3.5(对称正定矩阵) 满足式(3.9)的对称矩阵A 称为对称正定矩阵,或者就称为

正定矩阵(positive
 

definite
 

matrix)。若式(3.9)中的“>”替换为“≥”,则称矩阵A 为对称

半正定矩阵。
【例3.2】 判断下列矩阵是否正定。

A1=
9 6
6 5
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , A2=

9 6
6 3
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 。

  【解】 A1 是对称的,且∀x∈RR2\{0},有

xTA1x=[x1,x2]
9 6
6 5
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x1

x2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =9x21+12x1x2+5x22=(3x1+2x2)

2+x22>0,
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因此A1 是正定的。

A2 是对称的,但不是正定的,因为对于x∈RR2\{0},有

xTA2x=[x1,x2]
9 6
6 3
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x1

x2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =9x21+12x1x2+3x22=(3x1+2x2)

2-x22,

所以xTA2x 可能小于0,比如当x=[2,-3]T 时。
向量空间的基选定后,任何对称正定矩阵都以如下方式确定一个内积。
定理3.1 设VV是实值有限维向量空间,有序基B=(b1,b2,…,bn),<·,·>:VV×

VV→RR是一个内积当且仅当存在一个对称正定矩阵A∈RRn×n,对于∀x,y∈VV,有
<x,y>=

 

x�TAy�。
 

(3.10)
其中x�,y� 分别是x,y 关于基B 的坐标向量。

由式(3.6)和式(3.10)易看出,点积是内积的特殊情况(当且仅当A=En)。

【注3.2】 对称正定矩阵A∈RRn×n 具有以下性质。
(1)

 

A 的零空间(核)只由0组成,这是因为∀x≠0⇒xTAx>0,于是x≠0⇒Ax≠0。
(2)

 

A 的对角线元素aii 是正的,这是因为aii=e
T
iAei>0,其中ei 为RRn 标准基的第i

个基向量,i=1,2,…,n。

3.3 长度和距离

3.1节介绍了范数,它用来计算向量的长度。3.2节引入了内积。内积可以与范数产生

联系,因为任何内积<·,·>都可以自然地诱导出范数

‖x‖= <x,x>, (3.11)
于是就可以用内积来计算向量的长度(length)。然而,并不是每个范数都是由内积诱导出

来的,例如,曼哈顿范数[式(3.2)]并没有相应的内积。接下来我们只探讨由内积诱导的

范数。
【注3.3】(柯西-施瓦茨不等式) 内积<·,·>诱导的范数‖·‖满足柯西-施瓦茨不等式

|<x,y>|≤ ‖x‖‖y‖。
 

(3.12)

  【例3.3】(使用内积定义的向量长度)
现在,内积诱导的范数就可以用来计算向量长度。取向量x=[1,1]T∈RR2,若使用点

积作为内积,则向量x 的长度为

‖x‖= xTx = 12+12 = 2;
 

  若选用另一个内积

<x,y>=xT
 1 -

1
2

-
1
2  1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁􀪁

y=x1y1-
1
2
(x1y2+x2y1)+x2y2,

则当x=[1,1]T 时,有
<x,x>=x21-x1x2+x22=1-1+1=1,

‖x‖= <x,x>=1。
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这个长度比用点积计算的小,可以看出,这是因为此时x1x2>0。

对于y=[1,-1]T,y1y2<0,‖y‖= <y,y>= y21-y1y2+y
2
2= 3,此时比用点积

计算的长度大。
定义3.6(距离和度量) 给定内积空间为(VV,<·,·>),∀x,y∈VV,

d(x,y)=‖x-y‖= <x-y,x-y>
 

(3.13)
称为向量x 与y 之间的距离(distance)。若用点积作为内积,则此距离称为欧几里得距离。

映射

d:VV×VV→RR,
(x,y) d(x,y),

称为度量(metric)。
【注3.4】 与向量的长度类似,向量之间的距离未必需要内积,这是因为范数未必由内

积诱导。如果使用由内积诱导的范数,那么距离可能会随着内积的选择而变化。
度量d 有以下性质。
(1)

 

d 是正定的,即∀x,y∈VV,有d(x,y)≥0,且d(x,y)=0⇔x=y。
(2)

 

d 是对称的,即∀x,y∈VV,有d(x,y)=d(y,x)。
(3)

 

d 满足三角不等式,即∀x,y,z∈VV,有d(x,z)≤d(x,y)+d(y,z)。
【注3.5】 乍一看,内积和度量的性质非常相似,其实<x,y>和d(x,y)的大小是相反

的:
 

两个向量越接近,度量就越小;
 

但当长度给定时,两个向量越接近,内积越大。

3.4 角度和正交

内积还可以用来计算向量之间的夹角。
根据柯西-施瓦茨不等式[式(3.12)],设x≠0,y≠0,有

-1≤
<x,y>

‖x‖‖y‖ ≤
1,

因此,存在唯一的ω∈[0,π],使

cosω=
<x,y>

‖x‖‖y‖
, (3.14)

ω 就是向量x 与y 之间的夹角(included
 

angle)。
【例3.4】 用点积作为内积来计算向量x=[1,1]T 和y=[1,2]T 之间的夹角,根据

式(3.14)得

cosω=
<x,y>

<x,x><y,y>
=

xTy
xTxyTy

=
3
10
,

因此,向量x 与y 之间夹角为ω=arccos
3
10
,约为18°。

内积的一个重要作用是用来刻画正交性。
定义3.7(正交性) 给定向量x 与y,x 与y 正交(orthogonality)当且仅当<x,y>=0,

记作x⊥y。若x 与y 还是单位向量,即‖x‖=‖y‖=1,则称x 与y 是规范正交的

(orthonormal)。
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【注3.6】 由定义3.7知,向量空间中的零向量(0)与每个向量正交。
正交是几何中垂直概念的推广。然而,正如选取不同的内积会得到不同的向量长度一

样,向量之间的垂直关系也依赖于所选取的内积。下面看一个例子。
【例3.5】 对RR2 中向量x=[1,1]T,y=[-1,1]T,用两个不同的内积来计算它们的夹

角(见图3.2)。

图3.2 向量的正交性依赖于内积的选取

一是用点积作为内积,显然xTy=0,因此x 与y 之间的夹角ω=90°,即x⊥y。

二是选取内积<x,y>=xT
2 0
0 1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 y,则

cosω=
<x,y>

‖x‖‖y‖=-
1
3⇒ω=arccos-

1
3  ≈109.5°,

此时x 与y 不正交。因此,关于一种内积正交的向量不一定关于另一种内积正交。
定义3.8(正交矩阵) 方阵A∈RRn×n 为正交矩阵(orthogonal

 

matrix)当且仅当A 的

各列向量是规范正交的,这等价于

ATA=AAT=E, (3.15)
即

A-1=AT, (3.16)
也就是说,正交矩阵的转置就是其逆矩阵。

【注3.7】 由定义3.8易证,正交矩阵的乘积仍为正交矩阵,证明留给读者。

2.4.2小节已经讲过,矩阵对向量的线性变换,直观上就是旋转和伸缩,而且一般来说,
同一矩阵对不同的向量旋转的角度不同、伸缩的倍数也不同。但当使用点积作为内积时,正
交矩阵对向量的变换[称为正交变换(orthogonal

 

transformation)]很特殊,具体通过下面的

注3.8和注3.9来解释。
【注3.8】(保长性和保角性)
正交变换具有保长性和保角性。以下设A∈RRn×n 为正交矩阵,x,y∈RRn 为任意向量。
(1)

 

保长性:
 

‖Ax‖2=(Ax)T(Ax)=xTATAx=xTEx=xTx=‖x‖2, (3.17)
即x 经过正交矩阵A 的变换后,长度没有变化。

(2)
 

保角性:
 

设Ax 与Ay 之间的夹角为ω,则

cosω=
(Ax)T(Ay)
‖Ax‖‖Ay‖=

xTATAy
xTATAxyTATAy

=
xTy

‖x‖‖y‖
, (3.18)

即x,y 经过正交矩阵A 的变换后,夹角没有变化。
综上,正交矩阵对向量的变换,不进行伸缩,只改变方向,且向量之间的夹角保持不变。
进一步还可以推知,在正交变换下,几何体的运动只可能是旋转、反射及它们的组合,其
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形状和大小都不发生改变,即正交变换是刚体运动,详见注3.9。
【注3.9】(旋转矩阵和反射矩阵)
由保长性和保角性可推知,RRn 中的正交变换对刚体(形状和大小都不变的几何体)来

说,实现的是①围绕原点的旋转;
 

②关于过原点直线的反射;
 

③前两种变换的复合。换句

话说,RRn×n 中的正交矩阵可以是旋转矩阵、反射矩阵或二者的乘积。
以RR2 中的正交变换为例,旋转矩阵形如

Rot(θ)=
cosθ -sinθ
sinθ  cosθ
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , (3.19)

对于∀x∈RR2,向量Rot(θ)x 由x 围绕原点逆时针旋转θ角度得到,如图3.3(a)所示;
 

反射

矩阵形如

Ref(θ)=
cos2θ sin2θ
sin2θ -cos2θ
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , (3.20)

对于∀x∈RR2,向量Ref(θ)x 由x 关于倾斜角为θ的过原点直线反射而得到,如图3.3(b)所
示,其中α=β但与θ无关。

图3.3 向量的旋转和反射(其中α=β)

【例3.6】 令θ=
π
2
,则RR2 中的旋转矩阵和反射矩阵分别为

Rotπ2  = 0 -1
1 0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , Refπ2  = -1 0

0 1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ,

对于∀
x1
x2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ∈ RR2,显 然,0 -1

1  0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x1

x2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =

-x2
 x1

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,它 由

x1
x2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 逆 时 针 旋 转

π
2

得 到;
 

-1 0
 0 1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 x1

x2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 =

-x1
 x2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 ,它与

x1
x2

􀭠

􀭡

􀪁
􀪁􀪁 􀭤

􀭥

􀪁
􀪁􀪁 关于x2 坐标轴对称,如图3.4所示。

图3.4 θ=
π
2

时几何体的旋转和反射
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3.5 规范正交基

我们已经知道,n 维向量空间的一个基由n 个线性无关的向量组成。我们刚刚又学习

了如何用内积计算向量的长度和向量之间的夹角。在此基础上,可以定义一种特殊的基,基
向量长度都为1且两两正交。

定义3.9(规范正交基) 给定n 维内积空间VV,以及VV的一个基ε1,ε2,…,εn  ,如果

<εi,εj>=
1,i=j
 
0,i≠j , (3.21)

对任意的i,j=1,2,…,n 都成立,那么称基{ε1,ε2,…,εn}为规范正交基。
“规范”即基向量的范数(长度)都等于1,“正交”即基向量两两正交。
在2.3.4小节中,使用高斯消元法可以为一组向量张成的向量空间找到其基向量。本

章我们会介绍:
 

得到基向量(一般是非正交的)之后,可以通过施密特正交化方法来构建规

范正交基(详见3.8.4小节)。
【例3.7】 欧氏空间RRn 的标准基{e1,e2,…,en}是规范正交基,其中内积是向量的点

积。例如,在RR2 中,

e1=
1
0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , e2=

0
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ,

显然‖e1‖= 12+02=1,‖e2‖=1,e
T
1e2=1×0+0×1=0,{e1,e2}是规范正交基;

 

ε1=
1
2

1
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , ε2=

1
2

1
-1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ,

因为‖ε1‖=‖ε2‖=1且εT1ε2=0,所以是ε1,ε2 也组成RR2 的一个规范正交基。

3.6 正交补

前面我们定义了向量之间的正交,现在进一步来探讨向量空间之间的正交。
定义3.10(正交补) 给定D 维内积空间VV及其d 维子空间UU,UU的正交补空间UU⊥是

VV的一个D-d 维子空间,这个子空间包含VV中所有与UU中向量正交的向量,即
 

VV⊥={x∈VV:∀u∈UU,x⊥u}。
 

(3.22)
显然UU∩VV⊥={0}。因而∀x∈VV都能被唯一分解为

x=∑
d

i=1
λibi+∑

D-d

j=1
μjb

⊥
j , λi,μj ∈RR, (3.23)

其中(b1,b2,…,bd)为UU的基,(b⊥
1 ,b

⊥
2 ,…,b

⊥
D-d)为UU

⊥的基。

举个直观的正交补例子。如图3.5所示,设UU是RR3 中的2维子空间,直观上它是一个

过原点的平面。若RR3 中的向量w 与平面UU正交,则它是正交补UU⊥的基向量。所有与w 正

交的向量必在UU中。w 称为UU的法向量(normal
 

vector)。
在向量空间和仿射空间中,通常用法向量描述超平面。
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图3.5 3维空间中平面的正交补由其法向量张成

3.7 函数的内积

2.3.1小节介绍过,广义的向量空间中的向量不局限于RRn 中的元素。这有两层意思:
 

其一,向量可以不是只有一列或一行的矩阵;
 

其二,向量空间可以是无限维的。记C[a,b]
为定义在[a,b]上的连续函数的全体,易见C[a,b]关于函数的加法和数乘是封闭的,并且

满足2.3.1小节中注2.13列出的8条性质,因此C[a,b]是一个向量空间,其中的向量就是

任意定义在[a,b]上的连续函数。那么,如何定义其中两个向量的内积呢?
设函数u(x),v(x)∈C[a,b],则u(x),v(x)都在[a,b]上可积,二者的内积可以定义为

<u,v>=∫
b

a
u(x)v(x)dx。

 

(3.24)

于是可以通过函数的内积来定义范数 ‖u‖=∫
b

a
[u(x)]2dx。 此外可以定义正交:

 

若

式(3.24)的值为0,则函数u(x)与v(x)是正交的。
【例3.8】(函数的正交) 设函数u=sinx,v=cosx,则按式(3.24)定义的内积中被积

函数为f(x)=sinxcosx,如图3.6所示。由于f(-x)=-f(x),所以该函数是奇函数,且
该函数在区间[-π,π]上的积分值为0,故两个函数u=sinx 与v=cosx(x∈[-π,π])
正交。

图3.6 内积中被积函数的图像
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【注3.10】(余弦函数系) 若积分区间为[-π,π],则函数集

{1,cosx,cos2x,cos3x,…} (3.25)
是正交的,即其中任意两个函数正交,这是因为∀m,n∈NN 且 m ≠n,有 m+n,m-n∈
NN +,于是

∫
π

-π
cosmxcosnxdx=

1
2∫

π

-π
cos(m+n)xdx+∫

π

-π
cos(m-n)xdx  =0。

此函数集张成了一个函数子空间,子空间中的函数形如

∑
∞

k=0
λkcoskx, (3.26)

在[-π,π]上都是偶函数。将一个偶函数g(x)投影到这个子空间,用式(3.26)近似g(x),
这正是傅里叶级数的思想。

3.8 正交投影

投影是一类重要的线性变换。机器学习中处理的数据通常是高维的,而高维数据难以

分析及可视化。然而,高维数据通常只有少数维度包含大部分的信息,大多数其他维度对描

述数据的关键性质不是必需的。当然,对高维数据进行压缩或可视化时,会不可避免地丢失

数据的信息。为了使压缩损失最小化,我们需要保留数据信息量的最大维度。
第1章中已经介绍了,数据可以表示为向量,并且可以将原始高维数据投影到一个低维

特征空间中,在低维空间中分析数据。本节要探讨的正交投影,是将高维数据投影到给定的

低维子空间中,保留原始数据尽可能多的信息并最小化原始数据和相应投影之间的误差。
图3.7显示了正交投影的一个示例。

图3.7 2维数据集到1维子空间的正交投影

首先要明确投影是一种怎样的线性变换。
定义3.11(投影) 设VV是向量空间,UU是VV的一个子空间,若线性变换π:VV→UU满足

π2=π􀳱π=π, (3.27)
则π 称为一个投影(projection)。

因为线性变换可以用变换矩阵来表示,所以投影对应于一种特殊的变换矩阵Pπ,其称

为投影矩阵(projection
 

matrix),具有性质

P2π =Pπ。
 

(3.28)

  接 下 来,我 们 推 导 内 积 空 间(RRn,<·,·>)到 其 子 空 间 的 正交投影(orthogonal
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projection),先从1维子空间开始,最终推导出一般子空间上的正交投影。以下默认以点积

<x,y>=xTy 为内积。

3.8.1 1维子空间上的正交投影

给定一条经过原点的直线(1维子空间),设其基向量为b∈RRn。也就是说,这条直线是

由b张成的1维子空间UU⊆RRn。要将向量x∈RRn 正交地投影到UU上,就是要找到UU中最

接近x 的向量πUU (x)。投影向量πUU (x)的本质可以从以下两个方面来刻画(如图3.8
所示)。

图3.8 RR2 到一维子空间的正交投影

(1)
 

πUU (x)最接近向量x,即它们之间的距离‖x-πUU (x)‖最小,这意味着差向量

x-πUU (x)正交于直线UU,也就是x-πUU (x)与UU的基向量b正交,所以<x-πUU (x),b>=0。
(2)

 

向量x 在UU上的投影πUU (x)必是UU中的向量,因此πUU (x)可由UU的基向量b 线

性表示,即∃λ∈RR,有πUU (x)=λb,其中λ是πUU (x)关于b的坐标。
下面按照求投影的坐标λ、投影向量πUU (x)、投影矩阵Pπ 的顺序,详细解析1维子空

间上的正交投影。
第1步,求投影的坐标λ。在正交条件下有

<x-πUU (x),b>=0 ⇔
πUU(x)=λb

<x-λb,b>=0,
利用内积的双线性及对称性,得

<x,b>-λ<b,b>=0⇔λ=
<x,b>
<b,b>=

<b,x>
‖b‖2

,

此时内积为点积,于是可得

λ=
bTx
bTb

=
bTx
‖b‖2

。 (3.29)

若‖b‖=1,则投影的坐标λ等于bTx。
第2步,求投影向量πUU (x)∈UU。因为πUU (x)=λb,由式(3.29)得

πUU (x)=λb=
bTx
‖b‖2

b。 (3.30)

第3步,求投影矩阵Pπ。根据定义3.11,投影是线性变换,因此正交投影对应一个投影矩

阵Pπ,使
πUU (x)=Pπx。

 

(3.31)
由式(3.30),有

πUU (x)=λb=bλ=b bTx
‖b‖2

=
bbT

‖b‖2
x, (3.32)
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比较式(3.31)和式(3.32),立即可知

Pπ =
bbT

‖b‖2
。 (3.33)

其中‖b‖2=bTb一个数,bbT 是一个秩为1的对称矩阵,故Pπ 是一个秩为1的对称矩阵。

至此,由式(3.33)计算的矩阵Pπ,可将任意的x∈RRn 正交地投影到b 所张成的子空间

UU上,投影向量即Pπx∈UU。

【例3.9】 设一条过原点的直线的方向向量为b=[1,2,2]T,求出该直线上的正交投

影矩阵Pπ。
【解】 由式(3.33),得

Pπ =
bbT

bTb
=
1
9

1
2
2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 1 2 2  =

1
9

1 2 2
2 4 4
2 4 4

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 。

  可以举例验证Pπ 为正交投影:
 

①随机选择一个x∈RR3,检验x-Pπx 是否与b 正交;

②检验Pπ 是否为投影矩阵。例如,对x=[1,1,1]T,可求得

Pπx=
1
9

1 2 2
2 4 4
2 4 4

􀭠

􀭡
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

1
1
1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 =

5
9

1
2
2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 ∈span

1
2
2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁  。

  验证正交性:
 

bT(x-Pπx)=[1 2 2]
1
1
1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 -

5
9

1
2
2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁  =0。

  验证投影:
 

P2π =
1
9

1 2 2
2 4 4
2 4 4

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 ·

1
9

1 2 2
2 4 4
2 4 4

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 =

1
9

1 2 2
2 4 4
2 4 4

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 =Pπ。

  【注3.11】 PππUU(x)=πUU(x)意味着Pπ 的作用不会改变πUU (x),使用4.2节的知识,
可以说明投影πUU(x)是投影矩阵Pπ 的特征向量,其对应的特征值为1。

 

3.8.2 一般子空间上的正交投影

接下来,研究RRn 中的向量到m 维子空间UU⊆RRn 的正交投影,其中m≤n,m∈NN +。

设向量组(b1,b2,…,bm)是UU的有序基。要将向量x∈RRn 正交地投影到UU上,就是要找到

UU中最接近x 的向量πUU(x)。
与1维子空间的情形相仿,投影向量πUU(x)的本质可以从两个方面来刻画(图3.9是

RR3 中的向量投影到2维子空间的示例)。
(1)

 

距离‖x-πUU (x)‖最小,意味着差向量x-πUU(x)正交于子空间UU,也就是x-
πUU (x)与UU的基向量b1,b2,…,bm 正交,因此

<x-πUU (x),bi>=0, i=1,2,…,m。 (3.34)

  (2)
 

投影πUU (x)必是UU中的向量,可由UU的基(b1,b2,…,bm)来线性表示,即∃λ1,
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λ2,…,λm∈RR,有

πUU(x)=∑
m

i=1
λibi=Bλ, (3.35)

其中B=[b1,b2,…,bm]∈RR
n×m,λ=[λ1,λ2,…,λm]

T∈RRm 是πUU (x)关于基(b1,b2,…,

bm)的坐标向量。

图3.9 RR3 到其二维子空间的正交投影

于是,我们可以分步骤来求投影的坐标λ1,λ2,…,λm,投影向量πUU (x)和投影矩阵Pπ。
第1步,求投影的坐标λ1,λ2,…,λm。在正交条件式(3.34)下,并结合式(3.35)的表

示,有

bT1(x-Bλ)=0,

bT2(x-Bλ)=0,

︙

bTm(x-Bλ)=0,
从而得到一个齐次线性方程组

bT1

bT2
︙

bTm

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

[x-Bλ]=0⇔BT(x-Bλ)=0, (3.36)

进而有

BTBλ=BTx。
 

(3.37)
因为b1,b2,…,bm 是UU的基向量,所以矩阵B 列满秩,并且BTB 是可逆的(证明留给读

者)。于是可由式(3.37)解得

λ=(BTB)-1BTx, (3.38)
其中矩阵(BTB)-1BT 是B 的伪逆(伪逆的概念详见3.8.3小节)。

第2步,求投影向量πUU (x)∈UU。由于πUU (x)=Bλ,结合(3.38)式可得

πUU (x)=B(BTB)-1BTx。 (3.39)

  第3步,求投影矩阵Pπ。将πUU (x)=Pπx 与式(3.39)相比较,可得

Pπ =B(BTB)-1BT。 (3.40)

  至此,由式(3.40)计算的矩阵Pπ,可将任意的x∈RRn 正交地投影到m 维子空间UU上,
投影向量为Pπx∈UU。

【注3.12】 本小节中一般子空间的正交投影矩阵公式适用于3.8.1小节的1维子空
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间。若dim(UU)=1,则BTB 是一个实数,此时式(3.40)就可以写成Pπ=
BBT

BTB
,这正是

式(3.33)中的投影矩阵。
【例3.10】(到2维子空间上的正交投影)

对于RR3 的子空间UU=span
1
1
1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 ,

0
1
2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁  及向量x=

6
0
0

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 ∈RR

3,将x 正交投影到子空间UU

中,求投影坐标λ,投影向量πUU (x)和投影矩阵Pπ。

【解】 容易判断[1 1 1]T 和[0 1 2]T 线性无关,于是UU的生成集就是UU的一个

基,把UU的基向量写成矩阵

B=
1 0
1 1
1 2

􀭠

􀭡
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 。

  计算矩阵BTB 和向量BTx,有
 

BTB=
1 1 1
0 1 2
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥
􀪁
􀪁

1 0
1 1
1 2

􀭠

􀭡
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 =

3 3
3 5
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , BTx=
1 1 1
0 1 2
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

6
0
0

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 =

6
0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 。

根据式(3.38),得投影坐标

λ=
3 3
3 5
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

-1 6
0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 =

5
-3
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ;

 

根据式(3.35),得投影向量

πUU(x)=Bλ=
1 0
1 1
1 2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

5
-3
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 =

5
2

-1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 ,

相应的投影误差用原始向量与其在UU上的投影的差向量的范数来度量,即

‖x-πUU (x)‖=‖ 1 2 -1  T‖= 6;
 

根据式(3.40),得投影矩阵

Pπ =B(BTB)-1BT=
1 0
1 1
1 2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁

3 3
3 5
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁

-1 1 1 1
0 1 2
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 =

1
6

5 2 -1
2 2 2

-1 2 5

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 。

  可以分两步验证Pπ 为正交投影:
 

①验证x-Pπx 与UU的所有基向量正交;
 

②验证

P2π=Pπ。

【注3.13】 投影向量πUU (x)虽然位于RRn 的m 维子空间UU中,但πUU (x)仍是RRn 中的

向量。表示投影向量只需要m 个坐标λ1,λ2,…,λm。
【注3.14】(PCA的正交投影的特殊性) 回顾第1章介绍的PCA降维,事实上就是找

到一个正交投影矩阵将高维数据投影到低维子空间中,在式(1.39)

z'n=W'W'Tzn

中,zn∈RR
D,z'n∈RR

d,找到的投影矩阵就是Pπ=W'W'T。因为(W'T,W')-1=E,所以这个
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Pπ 符合式(3.40)。对同一组原始数据而言,PCA这个正交投影的特殊之处在于子空间中

的投影方差是最大的(同时重构误差是最小的),而一般的正交投影不对子空间做特殊要求,
如图3.10所示。

图3.10 一般的正交投影与PCA的正交投影

3.8.3 线性方程组的最小二乘解

2.2.6小节对线性方程组Ax=b的解做了进一步的讨论,将其写成如下形式

x1α1+x2α2+…+xnαn =b,
其中A=[α1,α2,…,αn],x=[x1,x2,…,xn]

T,并得出了结论:
 

线性方程组Ax=b 有解等

价于常数向量b可由系数矩阵A 的各列向量线性表示,换句话说,b存在于A 的各列向量张

成的子空间中;
 

而Ax=b无解等价于b不属于A 的各列向量张成的子空间。
现在,使用本章关于正交投影的知识,就可以近似求解无解的线性方程组Ax=b。虽

然向量b 不属于A 的各列向量张成的子空间,但可以在该子空间中找到最接近b 的向量,
即b在该子空间中的正交投影,记为b'。这样通过求解线性方程组Ax=b'得到原线性方程

组的近似解(称为最小二乘解)。具体来说,由原线性方程组Ax=b可得

ATAx=ATb, (3.41)
式(3.41)称为法方程。若A∈RRm×n 列满秩,则ATA∈RRn×n 且r(ATA)=r(A)=n。于是

ATA 可逆,法方程式(3.41)的解为

x=(ATA)-1ATb。 (3.42)
式(3.42)即原线性方程组Ax=b的最小二乘解,其中矩阵(ATA)-1AT 称为A 的伪逆。一

般来说,A 不是方阵,无法保证有逆矩阵,但只要A 列满秩(此时ATA 可逆),便可求其伪

逆。在实际应用中,我们常给ATA 加一个偏差项εE 来保证可逆性在数值上的稳定。

3.8.4 施密特正交化

向量空间的基一般不是正交的。然而,为了方便计算内积,我们常常需要得到规范正交

基。本小节就是来介绍,从非正交的基向量出发,可以使用施密特(Schmidt)正交化方法来

构建规范正交基。
施密特正交化方法的核心是正交投影,可将n 维向量空间VV的任意基(b1,b2,…,bn)

经过如下迭代构造为VV的一个正交基(u1,u2,…,un)。
u1=b1,

uk =bk -πspan(u1,…,uk-1)
(bk), k=2,3,…,n,

(3.43)
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其中πspan(u1,…,uk-1)
(bk)表示第k个基向量bk 到由前k-1个已构造出的正交向量u1,…,

uk-1 张成的子空间的投影,用bk 减去该投影得到向量uk,uk 与u1,…,uk-1 张成的k-1
维子空间正交,最终得到的(u1,u2,…,un)就是VV的一个正交基。进一步将u1,u2,…,un

单位化,得到

εk =
uk

‖uk‖
, k=1,2,…,n,

 

(3.44)

显然‖εk‖=1,k=1,2,…,n。(ε1,ε2,…,εn)就是VV的一个规范正交基。

【例3.11】 如图3.11(a)所示,RR2 中的一个基为

b1=
2
0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , b2=

1
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥
􀪁
􀪁 ,

使用施密特正交化方法,可构造出如下的RR2 中的一个正交基(u1,u2)(用点积作为内积)。

u1=
2
0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ,

u2=b2-πspan(u1)(b2)=b2-
u1u

T
1

‖u1‖
2b2=

1
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 -

1 0
0 0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 1

1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 =

0
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 。

这些步骤如图3.11(b)和(c)所示。显然uT1u2=0,即u1,u2 是正交的。

图3.11 施密特正交化过程

3.8.5 仿射空间上的正交投影

前面我们学习了向量空间向低维子空间的投影,接下来,将讨论如何将向量投影到仿射

空间中。
如图3.12(a)所示,给定仿射空间LL=x0+UU,其中b1,b2 是向量空间UU的基向量。为

确定向量x 在LL中的正交投影πLL(x),需要先把问题转化为确定在向量空间中的投影。
不难看出,任意向量x 相对于LL的位置就等同于x-x0 相对于LL-x0 的位置,而LL-

x0=UU为向量空间,故先求x-x0在向量空间UU中的正交投影,即πUU (x-x0),如图3.12(b)
所示。

对向量空间UU做整体平移,使其零元从原点移动到x0 的终点,就得到了仿射空间LL,如
图3.12(c)所示,UU上的投影πUU (x-x0)跟随UU的这个平移,就得到了x 在仿射空间LL上

的正交投影的定义

πLL(x)=x0+πUU (x-x0)。
 

(3.45)

  由式(3.45)知,πLL(x)是x 在仿射空间LL=x0+UU中的正交投影,也就是说πLL (x)-
x0 是x-x0 在向量空间UU中的正交投影。显然,仿射空间上的“正交投影”这个术语,是从

它的方向空间借来的。
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图3.12 仿射空间上的投影

3.9 旋转

旋转在计算机图形学和机器人学等领域有着重要的应用。旋转是一种线性变换,也是

欧氏空间RRn 中的自同构变换(一一映射的线性变换)。3.4节的注3.9中已介绍了,RRn 中

刚体(形状和大小都不变的几何体)围绕原点的旋转是一种正交变换,RR2 中的旋转矩阵形如

Rot(θ)=
cosθ -sinθ
sinθ cosθ
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 。

图3.13 θ=
π
2

时几何体的旋转

对于∀x∈RR2,x 围绕原点逆时针旋转θ角度得到的向量

就是Rot(θ)x。图3.13展示了几何体围绕原点旋转π
2
,

其所对应的旋转矩阵是

Rot(θ)=
0 -1
1 0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 。

  接下来,将由浅入深地介绍RR2,RR3,RRn 中的旋转矩阵。

3.9.1 2维欧氏空间中的旋转

欧氏空间RR2 的标准基是 e1=
1
0
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ,e2=

0
1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁  ,它确定了RR2 中的标准坐标系。把这个

坐标系逆时针旋转θ角,如图3.14所示,旋转后的向量依旧是线性无关的,因而仍然是RR2

的基。这意味着旋转是一个基变换。

图3.14 旋转是一个基变换
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因为旋转Φ 是线性变换,所以可用它的变换矩阵[称为旋转矩阵,记为Rot(θ)]来表示,
观察图3.14中的三角函数关系,旋转后的基向量为

Φ(e1)=
cosθ
sinθ
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , Φ(e2)=

-sinθ
cosθ

􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ;

 

又因为[e1 e2]就是单位矩阵E2,所以

Φ(e1) Φ(e2)  =[e1 e2]
cosθ -sinθ
sinθ cosθ
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥
􀪁
􀪁 , (3.46)

比较式(3.46)和式(2.48),由变换矩阵的定义,可知旋转矩阵为

R(θ)=[Φ(e1) Φ(e2)]=
cosθ -sinθ
sinθ cosθ
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 。

 

(3.47)

3.9.2 3维欧氏空间中的旋转

与RR2 中的旋转不同,RR3 中的旋转可以围绕任意一个过原点的轴,并且任一点的旋转过

程都在垂直于旋转轴的平面(2维子空间)内。如图3.15(a)所示,旋转轴为过原点的任意向

量l,UU为与l垂直的过原点的平面,θ为旋转角。尽管RR3 中的旋转轴方向是任意的,我们

也可以使用类似于3.9.1小节的方法来确定一般旋转矩阵R:
 

先确定标准基e1,e2,e3 旋

转后的向量,即正交的Re1,Re2,Re3,然后组合Re1,Re2,Re3 就可以得到旋转矩阵R。当

然,第一步确定标准基旋转后的向量并非易事。

图3.15 一般旋转和绕标准基的基向量旋转

在3维或更高维空间中,我们用右手螺旋法则来确定绕某一轴旋转的正方向,即让右手

大拇指指向旋转轴的方向,其余四指握拳指向的方向为旋转的正方向。图3.15(a)中,右手

大拇指指向旋转轴l的方向,其余四指握拳指向的方向为旋转角θ的方向;
 

图3.15(b)中,
旋转轴为e3 轴,θ的方向就是旋转的正方向。

如果以RR3 中的标准基的基向量ei 为旋转轴,如图3.15(b)所示,那么任意向量在旋转

时其坐标的第i个分量就是固定的,i=1,2,3。这个特殊性凸显了标准基的基向量作为旋

转轴的价值,有必要明确其旋转矩阵。
(1)

 

绕e1 轴旋转θ角:
 

∀x∈RR3,变换为Φ1(x)=R1(θ)x,旋转矩阵

R1(θ)=[Φ1(e1) Φ1(e2) Φ1(e3)]=
1 0 0
0 cosθ -sinθ
0 sinθ cosθ

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , (3.48)
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显然Φ1(e1)=e1,向量旋转后的e1 坐标不变,旋转正方向就是e2e3 坐标平面上的逆时针

方向。
(2)

 

绕e2 轴旋转θ角:
 

∀x∈RR3,变换为Φ2(x)=R2(θ)x,旋转矩阵

R2(θ)= Φ2(e1) Φ2(e2) Φ2(e3)  =
cosθ 0 -sinθ
0 1  0
sinθ 0  cosθ

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥
􀪁
􀪁
􀪁􀪁 , (3.49)

显然Φ2(e2)=e2,向量旋转后的e2 坐标不变,旋转正方向就是e3e1 坐标平面上的逆时针

方向。
(3)

 

绕e3 轴旋转θ角:
 

∀x∈RR3,变换为Φ3(x)=R3(θ)x,旋转矩阵

R3(θ)= Φ3(e1) Φ3(e2) Φ3(e3)  =
cosθ -sinθ 0
sinθ  cosθ 0
0  0 1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , (3.50)

显然Φ3(e3)=e3,向量旋转后的e3 坐标不变,旋转正方向就是e1e2 坐标平面上的逆时针

方向。

3.9.3 n维欧氏空间中的旋转

作为RR3 的推广,RRn 中的旋转也可以围绕任意一个过原点的轴,在正交于旋转轴的2维

子空间内进行。然而,n 维欧氏空间中确定一般旋转矩阵比较困难,我们更感兴趣于标准基

的基向量为旋转轴的情况。此时旋转可以理解为固定坐标的n-2维,只旋转剩余的2个基

向量确定的坐标平面。3.9.2小节已经在RR3 中做过类似的事情。以下给出这种特殊旋转

的定义。
定义3.12(Givens旋转) 设VV是n 维欧氏空间,若对于1≤i<j≤n,i,j=1,2,…,n,

θ∈RR,自同构Φij:VV→VV具有变换矩阵

Rij(θ)=

Ei-1 0 … … 0

0 cosθ 0 -sinθ 0
0 0 Ej-i-1 0 0

0 sinθ 0 cosθ 0
0 … … 0 En-j

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁􀪁

∈RRn×n, (3.51)

则Rij(θ)称为Givens旋转或Givens矩阵。本质上Rij(θ)是由单位矩阵En 做如下改变得

来的:
 

rii=cosθ, rij =-sinθ, rji=sinθ, rjj =cosθ。

  【注3.15】 (3.51)式中的0表示全零块,在不同的位置上可能是零矩阵、零向量或仅

一个0。

Givens矩阵当n=2时就是式(3.47)中的旋转矩阵,当n=3时就是式(3.48)~式(3.50)
中的矩阵。

【注3.16】 RRn 中的Givens旋转以标准基的一个基向量为旋转轴,向量在旋转时其坐

标中的n-2维是固定的,比一般旋转大大简化。应用中可以把围绕任意过原点的轴的一

般旋转用若干Givens旋转的复合来实现,也就是把对应的一般旋转矩阵分解成若干Givens
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矩阵的乘积。如图3.16所示,其中图3.16(b)是图3.16(a)左下角的局部放大,可以看到,
图3.16(a)中围绕l轴旋转θ等价于图3.16(b)中3个Givens旋转的复合:

 

e1e2 坐标面内

旋转φ1,e2e3 坐标面内旋转φ2,e3e1 坐标面内旋转φ3。

图3.16 RR3 中的一般旋转可由3个Givens旋转的复合来实现

3.9.4 旋转的性质

由于旋转矩阵是一种正交矩阵,旋转具有如下性质。
(1)

 

旋转保持距离不变,即∀x,y 有‖x-y‖=‖Rθx-Rθy‖,任意两点之间的距离

旋转之后保持不变。
(2)

 

旋转保持夹角不变,即Rθx 和Rθy 之间的夹角与x 和y 之间的夹角相等。
(3)

 

3维或更高维向量的旋转通常不能交换顺序。因此,实际应用中旋转的顺序很重

要,即使围绕同一旋转轴也不能交换顺序。只有在2维空间中向量旋转是可交换的,即

∀ϕ,θ∈[0,2π],R(φ)R(θ)=R(θ)R(φ)。

习题

1.
 

已知<·,·>:
 

对任意x=[x1 x2]
T∈RR2,y=[y1 y2]

T∈RR2,有
<x,y>=x1y1-(x1y2+x2y1)+2x2y2,

证明<·,·>是一个内积。
2.

 

设RR2 中<·,·>:
 

对任意x,y∈RR2,有

<x,y>=xT
2 0
1 2
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 y,

问<·,·>是点积吗?
3.

 

设

x=
1
2
3

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , y=

-1
-1
0

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 ,

使用以下内积计算x 与y 之间的距离。
(1)

 

<x,y>=xTy。

(2)
 

<x,y>=xTAy,其中A=
2 1 0
1 3 -1
0 -1 2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 。
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4.
 

设

x=
1
2
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , y=

-1
-1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ,

使用以下内积计算x 与y 之间角度。
(1)

 

<x,y>=xTy。

(2)
 

<x,y>=xTAy,其中B=
2 1
1 3
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 。

 

5.
 

证明正交矩阵的乘积仍为正交矩阵。

6.
 

欧氏空间RR5 默认以点积为内积,其子空间UU⊆RR5 和向量x∈RR5 分别为

UU=span

0
-1
2
0
2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

,

1
-3
1

-1
2

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

,

-3
4
1
2
1

􀭠

􀭡
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

,

-1
-3
5
0
7

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀮠

􀮢

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀮦

􀮨

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

, x=

-1
-9
-1
4
1

􀭠

􀭡

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

􀭤

􀭥

􀪁
􀪁
􀪁
􀪁
􀪁
􀪁
􀪁

。

  (1)
 

求x 在子空间UU中的正交投影πUU(x)。
(2)

 

求距离d(x,UU)。
7.

 

设欧氏空间RR3 的内积为

<x,y>=xT
2 1 0
1 2 -1
0 -1 2

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 y,

并设e1,e2,e3 为RR3 的标准基。
(1)

 

求e2 在子空间UU=span(e1,e3)中的投影πUU (e2)。
(2)

 

计算距离d(e2,UU)。
(3)

 

画出标准基向量和πUU (e2)。

8.
 

使用施密特正交化方法,把2维子空间UU⊆RR3 的基B=(b1,b2)变换为规范正交基

C=(c1,c2),其中

b1=
1
1
1

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 , b2=

-1
2
0

􀭠

􀭡

􀪁
􀪁
􀪁􀪁

􀭤

􀭥

􀪁
􀪁
􀪁􀪁 。

 

  9.
 

设x1,x2,…,xn>0,满足x1+x2+…+xn=1,利用柯西-施瓦茨不等式证明

(1)
 

∑
n

i=1
x2i ≥

1
n
。

(2)
 

∑
n

i=1

1
xi
≥n2。

提示:
 

使用RRn 中的点积,选择特定的向量x,y,运用柯西-施瓦茨不等式。

10.
 

设

x1=
2
3
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 , x2=

0
-1
􀭠
􀭡

􀪁
􀪁 􀭤

􀭥

􀪁
􀪁 ,

将x1,x2 旋转30°,求出旋转矩阵及旋转后的向量。


