





定价:59元
印次:1-3
ISBN:9787302611509
出版日期:2022.08.01
印刷日期:2025.02.13
图书责编:董柳吟
图书分类:教材
本书对人工智能安全的理论与实践技术进行了梳理,全面完整地覆盖了人工智能安全技术的主要方面,把相关知识体系划分为五部分,即人工智能的安全观、人工智能安全的数据处理、人工智能用于网络安全的攻击与防御、人工智能模型的对抗攻击与防御以及人工智能平台的安全与工具。第一部分对人工智能安全问题、基本属性、技术体系等进行了归纳梳理。第二部分介绍人工智能安全数据处理的三个主要方法,即非平衡数据分类、噪声数据处理和小样本学习方法。第三部分从人工智能技术赋能网络空间安全的攻击与防御问题角度出发,从三个典型实例及攻击图的角度介绍典型人工智能方法在攻击与防御中的应用。第四部分围绕机器学习模型的安全问题,对攻击者、对抗攻击的理论与方法、典型的对抗攻击方法、隐私安全、聚类模型的攻击以及对抗攻击的防御方法进行了梳理。第五部分介绍人工智能平台的安全与工具,以及基于阿里云天池AI学习平台的若干案例与实验。 本书可以作为高等院校网络空间安全、人工智能、大数据、计算机以及电子信息等相关专业研究生和高年级本科生的教材,也可以作为网络空间安全、人工智能安全、大数据、计算机等领域研究人员、专业技术人员和管理人员的参考书。
曾剑平,2006年获厦门大学博士学位,现为复旦大学计算机科学技术学院副教授、硕士生导师。主要研究方向:大数据安全、人工智能安全、社交媒体分析及应用、主动防御技术。
前言 近年来,人工智能理论与技术无论在学术研究还是在实际应用中,都得到了广泛关注,成为当今信息科技的发展潮流。但同时,诸如自动驾驶、客服机器人等人工智能应用中发生了一系列安全事件,引发了人们对人工智能应用前景的担忧。由此,人工智能安全被提上重要议程,学术界加快了人工智能安全理论与实践的研究步伐。从学科发展的角度看,人工智能和网络空间安全存在密切的联系。一方面,人工智能理论和技术有效地提升了网络空间安全攻击与防御的智能化水平; 另一方面,人工智能模型应用越来越多地被发现存在漏洞和安全风险,并成为网络空间安全的新问题。人工智能安全则是这两个学科方向发展和交叉的必然结果。 在教育部阿里云产学合作协同育人项目的支持下,本书结合大数据驱动的人工智能发展背景,对人工智能安全的理论与实践技术进行了全面梳理。从人工智能的安全观、人工智能安全的数据处理、人工智能用于网络安全的攻击与防御、人工智能模型的对抗攻击与防御以及人工智能平台的安全与工具五个角度,建立人工智能安全的完整知识体系。 本书作为一本产学兼顾的教材,具有如下特色: (1) 围绕大数据驱动的人工智能发展背景,充分考虑数据在人工智能中的重要性,提炼出人工智能安全的数据主线。把网络空间安全智能防御的数据处理、人工智能模型训练阶段的数据安全、推理阶段的数据安全以及数据角度的防御技术,作为知识体系的主干。 (2) 从安全观的角度来组织人工智能安全的知识体系。人工智能安全是人工智能和网络空间安全的交叉学科,网络空间安全的基本特征和规律对于人工智能安全仍然适用。这种知识体系安排充分考虑了两个学科方向的内在联系,有利于读者更深...
目录
第一部分人工智能的安全观
第1章人工智能安全概述
1.1什么是人工智能安全
1.2人工智能安全问题与脆弱性
1.2.1人工智能及其安全问题的出现
1.2.2人工智能安全的层次结构
1.2.3人工智能的脆弱性
1.3人工智能安全的基本属性
1.4人工智能安全的技术体系
1.4.1人工智能安全的数据处理
1.4.2人工智能用于网络安全攻击与防御
1.4.3人工智能对抗攻击与防御
1.4.4机器学习隐私攻击与保护
1.4.5人工智能安全治理技术
1.4.6人工智能平台安全
1.5人工智能安全的数学基础
1.6人工智能安全的相关法律与规范
1.7人工智能安全的发展趋势
第二部分人工智能安全的数据处理
第2章非平衡数据分类
2.1数据非平衡现象与影响
2.2非平衡数据分类方法
2.2.1数据欠采样
2.2.2数据过采样
2.2.3数据组合采样
2.2.4特征层的不平衡数据分类
2.2.5算法层的非平衡数据分类
2.3非平衡数据分类方法的实现
第3章噪声数据处理
3.1噪声的分类、产生原因与影响
3.2噪声处理的理论与方法
3.3基于数据清洗的噪声过滤
3.4主动式噪声迭代过滤
3.5噪声鲁棒模型
3.5.1错误样本权重调整
3.5.2损失函数设计
第4章小样本学习方法
4.1小样本学习基础
4.1.1小样本学习的类型
4.1.2小样本学习... 查看详情