





定价:39元
印次:1-1
ISBN:9787302661238
出版日期:2024.05.01
印刷日期:2024.05.10
图书责编:龙启铭
图书分类:教材
人工智能是一门实践性很强的学科,特别适合基于案例的新型教学形式。本书是为了引导学生深入 理解人工智能算法原理,提高学生对人工智能应用问题的研究、分析、解决能力而编写的。 本书是以实验案例方式组织的,全书共给出了21 个人工智能实验案例,覆盖了人工智能课程涉及 的主要内容,包括搜索求解、逻辑推理、贝叶斯网络、马尔可夫决策、监督学习、非监督学习、强化学 习等各方面,也包含了深度神经网络技术。为了便于教学,每个实验案例对实验的内容、背景和目标进 行了明确阐述,对所涉及的理论基础及算法也进行了详细介绍,并提供了相应的Python 语言代码。 本书可作为高等学校相关专业的人工智能案例课程教材,也可作为从事相关专业的技术人员的参考 用书。
徐义春,长期从事计算机科学与技术专业的教学与研究,负责数据结构、计算机算法、人工智能等课程的教学,主要研究方向为计算机算法、机器视觉、自然语言处理。
前 言 人工智能是目前发展迅速的学科,是新一轮科技革命和产业变革的重要驱动力量,各高校纷纷开设了相关专业及课程。人工智能学科知识体系庞大,以数学知识为基础,也非常重视应用,因此在教学的过程中,算法案例和实验极其重要。 本书一共提供了21 个人工智能实验教学案例,涉及基于搜索求解、逻辑推理、贝叶斯网络、马尔可夫决策、监督学习、非监督学习、强化学习等各方面。所有的案例按教学方案的方式表述,从实验任务、实验过程、相关知识、教学目标、教学指导、考核要求等各方面进行说明。 本书实验算法及参考代码用Python 语言完成,学生在学习过程中还会用到keras、sklearn、numpy 等常用的软件库。通过对本书的学习,可以培养学生深入理解人工智能算法原理,提高学生对人工智能应用问题的研究、分析及解决能力。 本书可作为高等学校相关专业的人工智能案例课程教材。其内容配合了Stuart J. Russell 和Peter Norvig 的《人工智能--一种现代方法》这本流行的教材,可作为其配套实验书使用。 本书配套教学视频参见https://space.bilibili.com/21418302。 由于人工智能技术发展迅速,以及编著者水平限制,本书难免存在缺点和疏漏,恳请使用者不吝指正,以便修改。感谢三峡大学研究生课程建设项目(SDKC 202112)的资助。
目录
第 1 章 启发式搜索:A* 算法 1
1.1 教学目标 1
1.2 实验内容与任务 1
1.3 实验过程及要求 1
1.4 相关知识及背景 2
1.5 实验教学与指导 3
1.5.1 判断连线是否穿过障碍物 3
1.5.2 邻接矩阵 3
1.5.3 AI 问题求解模型 4
1.5.4 A* 算法 4
1.5.5 A* 算法的最优性 6
1.5.6 Dijkstra 算法 6
1.6 实验报告要求 6
1.7 考核要求与方法 7
1.8 案例特色或创新 7
第 2 章 局部搜索:八皇后问题 8
2.1 教学目标 8
2.2 实验内容与任务 8
2.3 实验过程及要求 9
2.4 相关知识及背景 9
2.5 实验教学与指导 9
2.5.1 目标函数定义 9
2.5.2 邻居的定义 10
2.5.3 爬山法 10
2.5.4 爬山法的变形 12
2.5.5 模拟退火方法 13
2.6 实验报告要求 14
2.7 考核要求与方法 14
2.8 案例特色或创新 14
第 3 章 对抗与博弈:井字棋 15
3.1 教学目标 15
3.2 实验内容与任务 15
3.3 实验过程及要求 15
3.4 相关知识及背景 16
3.5 实验教学与指导 16
3.5.1 Minimax 决策 16
3.5.2 游戏模型 17
3.5.3 玩家 18
3.5.4 井字棋游戏的实现 19
3.6 实...
本书共给出了21个人工智能实验案例,覆盖了人工智能课程涉及的主要内容,包括搜索求解、逻辑推理、贝叶斯网络、马尔可夫决策、监督学习、非监督学习、强化学习等各个方面,也包含了深度神经网络技术,并提供了相应的Python语言代码。