首页 > 图书中心 >图书详情
MATLAB人工智能算法实战
作者:丁伟雄
丛书名:大数据与人工智能技术丛书
定价:89.80元
印次:1-1
ISBN:9787302653561
出版日期:2024.02.01
印刷日期:2024.01.26
本书以MATLAB R2021为平台,以实际应用为背景,通过叙述+函数+经典应用相结合的形式,深入浅出地介绍了MATLAB在人工智能中的经典应用相关知识。全书共11章,主要内容包括MATLAB环境与操作、数据分析实战、科学计算实战、数据建模实战、统计性数据分析实战、机器学习算法实战、深度学习算法实战、控制系统分析与设计实战、神经网络信息处理实战、**化方法实战、智能算法分析与实现实战。通过本书的学习,读者在领略到MATLAB简捷的同时将感受到利用MATLAB实现智能数据应用的领域广泛,功能强大。 本书可作为高等学校相关专业本科生和研究生的教学用书,也可作为相关领域科研人员、学者、工程技术人员的参考用书。
more >前言 人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识、心理学和哲学。人工智能内容十分广泛,它由不同的领域组成,如机器学习、计算机视觉等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程进行模拟。人工智能的研究内容包括语言的学习与处理、知识表现、智能搜索、知识获取、组合调度问题、感知问题、模式识别、逻辑程序设计、软计算、不精确和不确定的管理、人工生命、神经网络、复杂系统、推理、规划、机器学习、遗传算法、人类思维方式,最关键的难题还是机器的自主创造性思维能力的塑造与提升。 数学是一门研究现实世界数量关系和空间形式的科学。很多人在学习数学课程时,都会有一定的困惑: 数学这么难,学习数学到底有什么用呢?数学的难就体现在大多数的数学知识都很抽象,让人很难联系实际。其实数学正是来源于实际,是从实际中抽象出来的。如果能够尝试用抽象的数学知识去解决实际问题,一切将变得具象起来,数学的学习会变得更简单、更有意思。 将数学应用于实际,这正是科学与工程计算所要研究的内容。用数学知识解决实际问题通常包括两个基本步骤: 首先,需要把问题进行抽象,用数学的语言去描述,即在一定的合理假设下建立合适的数学模型; 其次,建立数学模型后,需要选择合适的工具求解模型。这里的求解并不只是简单的公式推导,大多数情况下不能靠手算实现,必须要借助计算机软件来实现。 计算机在人工智能中的主要作用如下。 使用计算机描述一个系统的行为。 使用计算机以数学方法描述物体和它们之间的空间关系。 应用程序和数据建模是为应用程序确定、记录和实现数据和进程要求的过程。 在众多的科学计算软件中,MATLAB是求解数学模型的利器。相比于其他软件,MATLAB有“草稿纸式”的编程语言,还有各类工具箱,易学易用,用户不仅可以调用其内部函数进行“直观”的计算,还可以根据自己的算法进行扩展编程。本书将结合数学建模实例全面介绍常用的数学建模方法及其MATLAB实现。 本书具有以下特点。 (1) 深入浅出,循序渐进。本书首先对MATLAB软件进行概要介绍,让读者对MATLAB的强大功能有一定认识,接着利用MATLAB对建模问题进行处理,让读者初步领略到利用MATLAB实现建模的简单与便捷,以及体会MATLAB在建模中的广泛应用。 (2) 实用性强,步骤详尽。本书结合MATLAB软件,利用各种方法实现数学建模解决各种实际问题,详尽地介绍MATLAB的使用方法与技巧。在讲解过程中辅以相应的图片,使读者在阅读时一目了然,从而快速掌握书中内容。 (3) 理论与实际相得益彰。书中的每个方法,除了理论讲解,都配有至少一个典型的应用实例进行巩固,使读者可通过实例加深对理论的理解,同时理论又让实例更有说服力。 (4) 易借鉴,易阅读,内容生动有趣。书中很多实例的求解方法比较直观、新颖,易于读者理解与阅读。本书摒弃了一些刻板、无味的文字,让文字既有活力,又易于理解,提高读者阅读的兴趣。 全书共分为11章,主要内容如下。 第1章介绍MATLAB环境与操作,主要包括MATLAB的启动与退出、数据类型、控制语句、绘图等内容。 第2章介绍数据分析实战,主要包括数据的预处理、数据汇总、数据建模、数据插值等内容。 第3章介绍科学计算实战,主要包括数值积分和微分方程、常微分方程、傅里叶与滤波等内容。 第4章介绍数据建模实战,主要包括数据降维、一元回归、多元线性回归、逐步回归等内容。 第5章介绍统计性数据分析实战,主要包括描述性统计量和统计图、概率分布、假设检验、方差分析等内容。 第6章介绍机器学习算法实战,主要包括机器学习概述、K近邻分类、判别分析、贝叶斯分类、支持向量机等内容。 第7章介绍深度学习算法实战,主要包括迁移学习、图像的深度学习、时间序列在深度学习中的应用等内容。 第8章介绍控制系统分析与设计实战,主要包括自动控制概述、控制系统的数学建模、判定系统稳定性、时域分析等内容。 第9章介绍神经网络信息处理实战,主要包括神经网络概述、感知器、径向基网络、BP神经网络等内容。 第10章介绍最优化方法实战,主要包括最优化概述、线性规划、非线性规划、整数规划等内容。 第11章介绍智能算法分析与实现实战,主要包括遗传算法、模拟退火算法、粒子群算法、免疫算法等内容。 本书可作为高等学校相关专业本科生和研究生的教学用书,也可作为相关领域科研人员、学者、工程技术人员的参考用书。 本书由佛山科学技术学院丁伟雄编写。 由于时间仓促,加之编者水平有限,书中不足和疏漏之处在所难免。在此,诚恳地期望得到专家和广大读者的批评指正。 编者2023年10月
more >