机器学习基础(第2版·题库·微课视频版)
本书重视理论与实践相结合,希望为读者提供全面而细致的学习指导。提供课件、大纲、教案、代码、数据集、试卷及答案,咨询QQ:2301891038(仅限教师)。

作者:吕云翔 王渌汀 袁琪 许丽华 王志鹏 任昌禹

丛书名:清华科技大讲堂

定价:59元

印次:2-1

ISBN:9787302664093

出版日期:2024.06.01

印刷日期:2024.06.07

图书责编:董柳吟

图书分类:教材

电子书
在线购买
分享
内容简介
作者简介
前言序言
资源下载
查看详情 查看详情 查看详情

本书以机器学习算法为主题,详细介绍算法的理论细节与应用方法。全书共19章,分别介绍了逻辑回归及**熵模型、k近邻模型、决策树模型、朴素贝叶斯分类器模型、支持向量机模型、集成学习框架、EM算法、降维算法、聚类算法、神经网络模型等基础模型或算法,以及8个综合项目实例。本书重视理论与实践相结合,希望为读者提供全面而细致的学习指导。 本书适合机器学习初学者、相关行业从业人员以及高等院校计算机科学与技术、软件工程等相关专业的师生阅读。

吕云翔,北京航空航天大学软件学院副教授。具有多年的软件开发、项目管理、计算机教学经验,对IT行业具有较全面的认识,出版教材多部。目前研究领域包括:软件工程、人工智能、大数据。

前言 《机器学习基础》于2018年10月正式出版以来,经过了几次印刷。许多高校将其作为“机器学习”课程的教材,深受这些学校师生的钟爱,获得了良好的社会效益。但从另外一个角度来看,作者有责任和义务维护好这本书的质量,及时更新本书的内容,做到与时俱进。 此次作者对全书的内容进行了全面的修改,比第1版更加翔实,例子也更多,也更加利于教学。 为了帮助读者深入理解机器学习原理,本书以机器学习算法为主题,详细介绍了算法中涉及的数学理论。此外,本书注重机器学习的实际应用,在理论介绍中穿插项目实例,帮助读者掌握机器学习研究的方法。 本书共19章。第1章为概述,主要介绍了机器学习的概念、组成、分类、模型评估方法,以及sklearn模块的基础知识。第2~6章分别介绍了分类和回归问题的常见模型,包括逻辑回归与最大熵模型、k近邻模型、决策树模型、朴素贝叶斯分类器模型、支持向量机模型。每章最后均以一个实例结尾,使用sklearn模块实现。第7章介绍集成学习框架,包括Bagging、Boosting以及Stacking的基本思想和具体算法。第8~10章主要介绍无监督算法,包括EM算法、降维算法以及聚类算法。第11章介绍神经网络与深度学习,包括卷积神经网络、循环神经网络、生成对抗网络、图卷积神经网络等基础网络。第7~11章最后也均以一个实例结尾。第12~19章包含8个综合项目实战,帮助读者理解前面各章所讲内容。 机器学习是一门交叉学科,涉及概率论、统计学、凸优化等多个学科或分支,发展过程中还受到了生物学、经济学的启发。这样的特性决定了机器学习具有广阔的发展...

课件下载

样章下载

暂无网络资源

扫描二维码
下载APP了解更多

目录
荐语
查看详情 查看详情

目录

随书资源

第1章机器学习概述

1.1机器学习的组成

1.2分类问题及回归问题

1.3监督学习、半监督学习和无监督学习

1.4生成模型及判别模型

1.5模型评估

1.5.1训练误差及泛化误差

1.5.2过拟合及欠拟合

1.6正则化

1.7Scikitlearn模块

1.7.1数据集

1.7.2模型选择

习题1

第2章逻辑回归及最大熵模型

2.1线性回归

2.1.1一元线性回归

2.1.2多元线性回归

2.2广义线性回归

2.2.1逻辑回归

2.2.2多分类逻辑回归

2.2.3交叉熵损失函数

2.3最大熵模型

2.3.1最大熵模型的导出

2.3.2最大熵模型与逻辑回归之间的关系

2.4评价指标

2.4.1混淆矩阵

2.4.2准确率

2.4.3精确率与召回率

2.4.4PR曲线

2.4.5ROC曲线

2.5实例: 基于逻辑回归实现乳腺癌预测

习题2

第3章k近邻算法

3.1k值的选取

3.2距离的度量

3.3快速检索 

3.4实例: 基于k近邻算法实现鸢尾花分类

习题3

第4章决策树

4.1特征选择

4.1.1信息增益

4.1.2信息增益比

4.2决策树生成算法CART

4.3决策树剪枝

4.3.1预剪枝

4.3.2后剪枝

4.4实例: 基于决策树实...

理论与实践相结合,全面、系统地介绍机器学习算法的理论细节与应用方法