内容简介

"《从RTL级代码剖析FPGA加速大模型训练与推理》系统而深入地介绍了FPGA在大规模神经网络训练与推理中的应用,重点聚焦于FPGA的硬件架构、计算优化与资源调度等技术。《从RTL级代码剖析FPGA加速大模型训练与推理》共分为12章,内容涵盖FPGA与Verilog HDL基础、FPGA的基本架构、深度学习算法的计算特性、硬件加速的基本思路、模型压缩与量化技术、FPGA在Transformer模型中的应用、大模型训练的硬件优化、异构计算架构中的FPGA角色,以及面向FPGA的深度学习编译器开发。《从RTL级代码剖析FPGA加速大模型训练与推理》对FPGA硬件设计、计算资源调度、硬件优化等技术进行了详尽分析,读者可以从中获得利用FPGA加速深度学习计算的核心方法与思路。

通过理论与实践相结合,《从RTL级代码剖析FPGA加速大模型训练与推理》为读者提供了一套从硬件设计到算法优化的完整知识体系。无论是希望深入学习FPGA设计的学生,还是正在从事FPGA加速开发的专业工程师,都能从本书中获得丰富的专业知识与实用的工程技能。"