图书目录

第1章

 基本概念和操作

环境

常量

算术运算

赋值

向量的生成和基本操作

向量的生成

向量的基本操作

向量的运算

向量的逻辑运算

高级数据结构

矩阵的操作和运算

数组

数据框

列表

数据处理

保存数据

读入数据

数据转换

编写程序

循环和控制

函数

基本统计计算

抽样

统计分布图形功能

 函数

多图显示

帮助和包

习题

第2章

基本概念

非参数统计概念与产生

假设检验回顾

经验分布和分布探索

经验分布

生存函数

检验的相对效率

分位数和非参数估计

秩检验统计量

统计量

习题

第3章

单一样本的推断问题

符号检验和分位数推断

基本概念

大样本计算

符号检验在配对样本比较中的应用

分位数检验------符号检验的推广趋势存在性检验

随机游程检验

符号秩检验

基本概念

符号秩检验和抽样分布

单组数据的位置参数置信区间估计

顺序统计量位置参数置信区间估计

基于方差估计法的位置参数置信区间估计

正态记分检验

分布的一致性检验

拟合优度检验

正态性检验

正态分布检验

单一总体渐近相对效率比较

习题

第4章

两独立样本数据的位置和尺度推断中位数检验

秩和检验

方差检验

方差检验

习题

第5章

多组数据位置推断

试验设计和方差分析的基本概念回顾

单因素方差分析

检验

秩方差分析法

随机区组数据的调整秩和检验

检验

不完全区组分析法

习题

第6章

分类数据的关联分析

s$列联表和$\chi^2$独立性检验

齐性检验

精确性检验检验

关联规则

关联规则基本概念

算法

检验法

对数线性模型

对数线性模型的基本概念

模型的设计矩阵

模型的估计和检验

高维对数线性模型和独立性

习题

第7章

秩相关和分位数回归

秩相关检验

相关检验

多变量

协和系数检验

一致性检验

中位数回归系数估计法

线性分位回归模型

习题

第8章

非参数密度估计

直方图密度估计

 核密度估计

核函数的基本概念

贝叶斯决策和非参数密度估计

习题

第9章

 一元非参数回归

 核回归光滑模型

局部多项式回归

局部线性回归

局部多项式回归的基本原理

稳健回归

近邻回归

正交序列回归

罚最小二乘法

习题

第10章

数据挖掘与机器学习

分类一般问题

回归模型

回归模型的极大似然估计}

回归和线性判别函数LDA

决策树

决策树基本概念

决策树的剪枝

回归树

决策树的特点

算法

支持向量机

最大边距分类

支持向量机问题的求解

支持向量机的核方法

随机森林树

随机森林树算法的定义

随机森林树算法的性质

如何确定随机森林树算法中树的节点分裂变量

随机森林树的回归算法

有关随机森林树算法的一些评价

多元自适应回归样条的一些性质}

附录

参考文献