图书目录

C O N T E N T S I N B R I E F

Preface xvii

Chapter 1 The Crystal Structure of Solids 1

Chapter 2 Theory of Solids 31

Chapter 3 The Semiconductor in Equilibrium 70

Chapter 4 Carrier Transport and Excess Carrier Phenomena 128

Chapter 5 The pn Junction and Metal每Semiconductor Contact 174

Chapter 6 Fundamentals of the Metal每Oxide每Semiconductor

Field-Effect Transistor 223

Chapter 7 Metal每Oxide每Semiconductor Field-Effect Transistor:

Additional Concepts 311

Chapter 8 Nonequilibrium Excess Carriers in Semiconductors 358

Chapter 9 The pn Junction and Schottky Diodes 398

Chapter 10 The Bipolar Transistor 460

Chapter 11 Additional Semiconductor Devices and Device

Concepts 546

Chapter 12 Optical Devices 590

Appendix A Selected List of Symbols 636

Appendix B System of Units, Conversion Factors, and General

Constants 643

Appendix C The Periodic Table 647

Appendix D Unit of Energy〞The Electron-Volt 648

Appendix E ※Derivation§ and Applications of Schr?dinger*s

Wave Equation 650

Appendix F Answers to Selected Problems 656

Index 663

ix

CONTENTS

Preface xvii

C H A P T E R 1

The Crystal Structure of Solids 1

1.0 Preview 1

1.1 Semiconductor Materials 2

1.2 Types of Solids 3

1.3 Space Lattices 4

1.3.1 Primitive and Unit Cell 4

1.3.2 Basic Crystal Structures 6

1.3.3 Crystal Planes and Miller Indices 7

1.3.4 The Diamond Structure 13

1.4 Atomic Bonding 15

1.5 Imperfections and Impurities in Solids 17

1.5.1 Imperfections in Solids 17

1.5.2 Impurities in Solids 18

1.6 Growth of Semiconductor Materials 19

1.6.1 Growth from a Melt 20

1.6.2 Epitaxial Growth 22

1.7 Device Fabrication Techniques:

Oxidation 23

1.8 Summary 25

Problems 27

C H A P T E R 2

Theory of Solids 31

2.0 Preview 31

2.1 Principles of Quantum Mechanics 32

2.1.1 Energy Quanta 32

2.1.2 Wave每Particle Duality Principle 34

2.2 Energy Quantization and Probability

Concepts 36

2.2.1 Physical Meaning of the Wave

Function 36

2.2.2 The One-Electron Atom 37

2.2.3 Periodic Table 40

2.3 Energy-Band Theory 41

2.3.1 Formation of Energy Bands 41

2.3.2 The Energy Band and the Bond Model 45

2.3.3 Charge Carriers〞Electrons and Holes 47

2.3.4 Effective Mass 49

2.3.5 Metals, Insulators, and

Semiconductors 50

2.3.6 The k-Space Diagram 52

2.4 Density of States Function 55

2.5 Statistical Mechanics 57

2.5.1 Statistical Laws 57

2.5.2 The Fermi每Dirac Distribution Function

and the Fermi Energy 58

2.5.3 Maxwell每Boltzmann Approximation 62

2.6 Summary 64

Problems 65

C H A P T E R 3

The Semiconductor in Equilibrium 70

3.0 Preview 70

3.1 Charge Carriers in Semiconductors 71

3.1.1 Equilibrium Distribution of Electrons

and Holes 72

3.1.2 The n0 and p0 Equations 74

3.1.3 The Intrinsic Carrier Concentration 79

3.1.4 The Intrinsic Fermi-Level Position 82

3.2 Dopant Atoms and Energy Levels 83

3.2.1 Qualitative Description 83

3.2.2 Ionization Energy 86

3.2.3 Group III每V Semiconductors 88

3.3 Carrier Distributions in the Extrinsic

Semiconductor 89

3.3.1 Equilibrium Distribution of Electrons

and Holes 89





xi

xii Contents

3.3.2 The n0 p0 Product 93

 3.3.3 The Fermi每Dirac Integral 94

3.3.4 Degenerate and Nondegenerate

Semiconductors 96

3.4 Statistics of Donors and Acceptors 97

3.4.1 Probability Function 98

 3.4.2 Complete Ionization and Freeze-Out 99

3.5 Carrier Concentrations〞Effects of

Doping 102

3.5.1 Compensated Semiconductors 102

3.5.2 Equilibrium Electron and Hole

Concentrations 102

3.6 Position of Fermi Energy Level〞Effects of

Doping and Temperature 109

3.6.1 Mathematical Derivation 109

3.6.2 Variation of EF with Doping Concentration

and Temperature 112

3.6.3 Relevance of the Fermi Energy 114

3.7 Device Fabrication Technology: Diffusion and

Ion Implantation 115

3.7.1 Impurity Atom Diffusion 116

3.7.2 Impurity Atom Ion Implantation 118

3.8 Summary 119

Problems 121

C H A P T E R 4

Carrier Transport and Excess Carrier

Phenomena 128

4.0 Preview 128

4.1 Carrier Drift 129

4.1.1 Drift Current Density 129

4.1.2 Mobility Effects 132

4.1.3 Semiconductor Conductivity

and Resistivity 137

4.1.4 Velocity Saturation 143

4.2 Carrier Diffusion 145

4.2.1 Diffusion Current Density 145

4.2.2 Total Current Density 148

4.3 Graded Impurity Distribution 149

4.3.1 Induced Electric Field 149

4.3.2 The Einstein Relation 152

4.4 Carrier Generation and Recombination 153

4.4.1 The Semiconductor in Equilibrium 154

4.4.2 Excess Carrier Generation and

Recombination 155

4.4.3 Generation每Recombination Processes 158

4.5 The Hall Effect 161

4.6 Summary 164

Problems 166

C H A P T E R 5

The pn Junction and Metal每Semiconductor

Contact 174

5.0 Preview 174

5.1 Basic Structure of the pn Junction 175

5.2 The pn Junction〞Zero Applied Bias 176

5.2.1 Built-In Potential Barrier 177

5.2.2 Electric Field 179

5.2.3 Space Charge Width 183

5.3 The pn Junction〞Reverse Applied Bias 185

5.3.1 Space Charge Width and Electric

Field 186

5.3.2 Junction Capacitance 189

5.3.3 One-Sided Junctions 192

5.4 Metal每Semiconductor Contact〞 Rectifying

Junction 194

5.4.1 The Schottky Barrier 194

5.4.2 The Schottky Junction〞Reverse Bias 196

5.5 Forward Applied Bias〞An Introduction 197

5.5.1 The pn Junction 197

5.5.2 The Schottky Barrier Junction 199

5.5.3 Comparison of the Schottky Diode and the

pn Junction Diode 201

5.6 Metal每Semiconductor Ohmic

Contacts 203

5.7 Nonuniformly Doped pn Junctions 206

5.7.1 Linearly Graded Junctions 206

5.7.2 Hyperabrupt Junctions 208

5.8 Device Fabrication Techniques:

Photolithography, Etching,

and Bonding 210











Contents xiii

5.8.1 Photomasks and Photolithography 210

5.8.2 Etching 211

5.8.3 Impurity Diffusion or Ion

Implantation 211

5.8.4 Metallization, Bonding,

and Packaging 211

5.9 Summary 212

Problems 215

C H A P T E R 6

Fundamentals of the Metal每Oxide每

Semiconductor Field-Effect Transistor 223

6.0 Preview 223

6.1 The MOS Field-Effect Transistor Action 224

6.1.1 Basic Principle of Operation 225

6.1.2 Modes of Operation 226

6.1.3 Amplification with MOSFETs 226

6.2 The Two-Terminal MOS Capacitor 227

6.2.1 Energy-Band Diagrams and Charge

Distributions 228

6.2.2 Depletion Layer Thickness 235

6.3 Potential Differences in the

MOS Capacitor 239

6.3.1 Work Function Differences 240

6.3.2 Oxide Charges 244

6.3.3 Flat-Band Voltage 245

6.3.4 Threshold Voltage 247

 6.3.5 Electric Field Profile 254

6.4 Capacitance每Voltage Characteristics 258

6.4.1 Ideal C每V Characteristics 258

 6.4.2 Frequency Effects 263

 6.4.3 Fixed Oxide and Interface Charge

Effects 264

6.5 The Basic MOSFET Operation 268

6.5.1 MOSFET Structures 268

6.5.2 Current每Voltage Relationship〞Basic

Concepts 270

 6.5.3 Current每Voltage Relationship〞

Mathematical Derivation 282

6.5.4 Substrate Bias Effects 287

6.6 Small-Signal Equivalent Circuit and

Frequency Limitation Factors 290

6.6.1 Transconductance 290

6.6.2 Small-Signal Equivalent Circuit 291

6.6.3 Frequency Limitation Factors and

Cutoff Frequency 293

6.7 Device Fabrication Techniques 296

6.7.1 Fabrication of an NMOS Transistor 296

6.7.2 The CMOS Technology 297

6.8 Summary 299

Problems 301

C H A P T E R 7

Metal每Oxide每Semiconductor Field-Effect

Transistor: Additional Concepts 311

7.0 Preview 311

7.1 MOSFET Scaling 312

7.1.1 Constant-Field Scaling 312

7.1.2 Threshold Voltage〞First

Approximation 313

7.1.3 Generalized Scaling 314

7.2 Nonideal Effects 315

7.2.1 Subthreshold Conduction 315

7.2.2 Channel Length Modulation 318

7.2.3 Mobility Variation 321

7.2.4 Velocity Saturation 324

7.3 Threshold Voltage Modifications 326

7.3.1 Short-Channel Effects 327

7.3.2 Narrow-Channel Effects 331

7.3.3 Substrate Bias Effects 333

7.4 Additional Electrical Characteristics 335

7.4.1 Oxide Breakdown 335

7.4.2 Near Punch-Through or Drain-Induced

Barrier Lowering 335

7.4.3 Hot Electron Effects 337

7.4.4 Threshold Adjustment by Ion

Implantation 338

7.5 Device Fabrication Techniques: Specialized

Devices 341

7.5.1 Lightly Doped Drain Transistor 342

7.5.2 The MOSFET on Insulator 343



xiv Contents

7.5.3 The Power MOSFET 345

7.5.4 MOS Memory Device 348

7.6 Summary 350

Problems 352

C H A P T E R 8

Nonequilibrium Excess Carriers

in Semiconductors 358

8.0 Preview 358

8.1 Carrier Generation and Recombination 359

8.2 Analysis of Excess Carriers 360

8.2.1 Continuity Equations 361

8.2.2 Time-Dependent Diffusion Equations 362

8.3 Ambipolar Transport 364

8.3.1 Derivation of the Ambipolar Transport

Equation 364

8.3.2 Limits of Extrinsic Doping and Low

Injection 366

8.3.3 Applications of the Ambipolar Transport

Equation 368

8.3.4 Dielectric Relaxation Time Constant 376

8.3.5 Haynes每Shockley Experiment 379

8.4 Quasi-Fermi Energy Levels 382

8.5 Excess Carrier Lifetime 385

8.5.1 Shockley每Read每Hall Theory

of Recombination 385

8.5.2 Limits of Extrinsic Doping and Low

Injection 387

8.6 Surface Effects 389

8.6.1 Surface States 389

8.6.2 Surface Recombination Velocity 390

8.7 Summary 391

Problems 392

C H A P T E R 9

The pn Junction and Schottky Diodes 398

9.0 Preview 398

9.1 The pn and Schottky Barrier Junctions

Revisited 399

9.1.1 The pn Junction 399

9.1.2 The Schottky Barrier Junction 402

9.2 The pn Junction〞Ideal Current每Voltage

Relationship 404

9.2.1 Boundary Conditions 404

9.2.2 Minority-Carrier Distribution 409

9.2.3 Ideal pn Junction Current 411

9.2.4 Summary of Physics 416

9.2.5 Temperature Effects 418

9.2.6 The ※Short§ Diode 420

9.2.7 Summary of Results 422

9.3 The Schottky Barrier Junction〞Ideal

Current每Voltage Relationship 423

9.3.1 The Schottky Diode 423

9.3.2 Comparison of the Schottky Diode

and the pn Junction Diode 426

9.4 Small-Signal Model of the pn Junction 428

9.4.1 Diffusion Resistance 428

9.4.2 Small-Signal Admittance 430

9.4.3 Equivalent Circuit 432

9.5 Generation-Recombination Currents 434

9.5.1 Reverse-Bias Generation Current 434

9.5.2 Forward-Bias Recombination Current 437

9.5.3 Total Forward-Bias Current 439

9.6 Junction Breakdown 441

9.7 Charge Storage and Diode Transients 446

9.7.1 The Turn-Off Transient 446

9.7.2 The Turn-On Transient 449

9.8 Summary 449

Problems 451

C H A P T E R 10

The Bipolar Transistor 460

10.0 Preview 460

10.1 The Bipolar Transistor Action 461

10.1.1 The Basic Principle of Operation 462

10.1.2 Simplified Transistor Current

Relations 466

10.1.3 The Modes of Operation 468

10.1.4 Amplification with Bipolar

Transistors 470

Contents xv

10.2 Minority-Carrier Distribution 472

10.2.1 Forward-Active Mode 472

10.2.2 Other Modes of Operation 480

10.3 Low-frequency Common-Base

Current Gain 483

10.3.1 Contributing Factors 483

10.3.2 Mathematical Derivation of Current

Gain Factors 486

10.3.3 Summary and Review 489

10.3.4 Example Calculations of the

Gain Factors 490

10.4 Nonideal Effects 495

10.4.1 Base Width Modulation 495

10.4.2 High Injection 499

10.4.3 Emitter Bandgap Narrowing 501

10.4.4 Current Crowding 503

 10.4.5 Nonuniform Base Doping 506

10.4.6 Breakdown Voltage 507

10.5 Hybrid-Pi Equivalent Circuit Model 513

10.6 Frequency Limitations 517

10.6.1 Time-Delay Factors 517

10.6.2 Transistor Cutoff Frequency 519

10.7 Large-Signal Switching 522

10.8 Device Fabrication Techniques 524

10.8.1 Polysilicon Emitter BJT 524

10.8.2 Fabrication of Double-Polysilicon

npn Transistor 525

10.8.3 Silicon-Germanium Base

Transistor 527

10.8.4 The Power BJT 529

10.9 Summary 533

Problems 535

C H A P T E R 11

Additional Semiconductor Devices

and Device Concepts 546

11.0 Preview 546

11.1 The Junction Field-Effect Transistor 547

11.1.1 The pn JFET 547

11.1.2 The MESFET 551

11.1.3 Electrical Characteristics 553

11.2 Heterojunctions 560

11.2.1 The Heterojunction 560

11.2.2 Heterojunction Bipolar Transistors 564

11.2.3 High-Electron Mobility Transistor 566

11.3 The Thyristor 567

11.3.1 The Basic Characteristics 568

11.3.2 Triggering the SCR 570

11.3.3 Device Structures 574

11.4 Additional MOSFET Concepts 578

11.4.1 Latch-Up 578

11.4.2 Breakdown 580

11.5 Microelectromechanical Systems

(MEMS) 583

11.5.1 Accelerometers 583

11.5.2 Inkjet Printing 584

11.5.3 Biomedical Sensors 584

11.6 Summary 586

Problems 587

C H A P T E R 12

Optical Devices 590

12.0 Preview 590

12.1 Optical Absorption 591

12.1.1 Photon Absorption Coefficient 591

12.1.2 Electron每Hole Pair Generation

Rate 594

12.2 Solar Cells 596

12.2.1 The pn Junction Solar Cell 596

12.2.2 Conversion Efficiency and Solar

Concentration 599

12.2.3 The Heterojunction Solar Cell 601

12.2.4 Amorphous Silicon Solar Cells 603

12.3 Photodetectors 605

12.3.1 Photoconductor 605

12.3.2 Photodiode 608

12.3.3 PIN Photodiode 611

12.3.4 Avalanche Photodiode 614

12.3.5 Phototransistor 614

12.4 Light-Emitting Diodes 616

12.4.1 Generation of Light 616





xvi Contents

12.4.2 Internal Quantum Efficiency 616

12.4.3 External Quantum Efficiency 618

12.4.4 LED Devices 620

12.5 Laser Diodes 622

12.5.1 Stimulated Emission and Population

Inversion 622

12.5.2 Optical Cavity 625

12.5.3 Threshold Current 627

12.5.4 Device Structures and

Characteristics 627

12.6 Summary 629

Problems 631

A P P E N D I X A

Selected List of Symbols 636

A P P E N D I X B

System of Units, Conversion Factors,

and General Constants 643

A P P E N D I X C

Unit of Energy〞The Electron-Volt 647

A P P E N D I X D

※Derivation§ and Applications of

Schr?dinger*s Wave Equation 649

Index 655