图书目录

第一篇预备知识篇1 

第1 章分子生物学基础3 

1.1 生命的演化与分类............................... 4

1.2核酸:DNA与RNA.............................. 5

1.3 蛋白质...................................... 7

1.4 DNA 的复制.................................. 9

1.5 基因与染色体.................................. 10

1.6 基因表达.................................... 10

1.6.1 转录................................... 11

1.6.2 遗传密码................................ 11

1.6.3 基因的进化——遗传与变异...................... 14

1.7 现代生物工程技术............................... 16

1.8 现代分子生物学中的经典计算问题...................... 18

第2 章数学及计算机科学基础20 

2.1 线性代数理论.................................. 20

2.1.1 记号与约定............................... 20

2.1.2 矩阵的范数............................... 20

2.1.3 矩阵的特征值与特征向量....................... 21

2.1.4 矩阵的广义逆.............................. 22

2.2 概率论基础知识................................. 22

2.2.1 随机事件................................ 22

2.2.2 概率的三种定义............................. 23

2.2.3 概率的加法原理............................. 24

2.2.4 条件概率................................ 24

2.2.5全概率公式和Bayes公式....................... 24

2.2.6 独立随机试验与贝努利定律...................... 25

2.2.7 随机变量及其分布........................... 26

2.2.8 常用的随机分布............................. 27

2.2.9 概率分布的熵与相对熵......................... 30

X 目录

2.2.10 随机过程................................ 31

2.2.11 一阶马氏链............................... 31

2.2.12 随机游动................................ 34

2.2.13 高阶马氏链............................... 34

2.2.14 统计推断与假设检验.......................... 35

2.3 最优化理论................................... 35

2.3.1 问题描述................................ 35

2.3.2 Lagrange 理论............................. 37

2.4 统计学习理论.................................. 41

2.4.1 引言................................... 41

2.4.2 机器学习的基本问题和方法...................... 42

2.4.3 统计学习理论的核心内容....................... 45

2.5 函数增长速度的比较.............................. 54

第二篇序列分析篇57 

第3 章序列比对的基本方法59 

3.1 序列的相似性与同源性............................. 59

3.2 点阵图...................................... 60

3.3 两序列比对概述................................. 61

3.4 全局比对的动态规划方法........................... 62

3.5 局部比对的动态规划方法........................... 64

3.6 重叠区域匹配的准全局比对算法........................ 66

3.7 空位罚分模型.................................. 68

3.8 仿射空位罚分模型下的全局比对算法..................... 69

3.9 仿射空位罚分模型下的局部比对算法..................... 72

3.10 降价空间存储的两序列比对算法........................ 75

3.10.1 线性空间复杂性算法.......................... 75

3.10.2 CheckPoint 算法............................ 77

3.11 降低时间开销的两序列比对算法........................ 82

3.11.1 分块比对算法.............................. 82

3.11.2 带状比对算法.............................. 83

3.12 比对得分的正则化............................... 85

3.13 启发式的近似寻优比对算法.......................... 86

3.13.1 FASTA ................................. 86

3.13.2 BLAST ................................. 88

3.14 比对得分的统计学显著性........................... 90

目录XI

3.15 多序列比对................................... 90

3.15.1 MSA................................... 93

3.15.2 渐进式比对............................... 94

3.15.3 Gibbs 采样方法............................. 97

3.15.4 启发式多序列比对软件与工具..................... 98

3.16 氨基酸替换矩阵................................. 99

3.16.1 PAM 氨基酸替换矩阵......................... 99

3.16.2 BLOSUM 氨基酸替换矩阵....................... 101

3.17 小结....................................... 102

第4 章序列比对的并行计算103 

4.1 并行编程模型.................................. 103

4.1.1 并行计算的粒度............................. 103

4.1.2 进程间的通信.............................. 104

4.2 并行计算机系统结构.............................. 105

4.2.1 通用并行计算机系统.......................... 105

4.2.2 专用并行处理硬件........................... 105

4.3 序列比对及其并行化方案........................... 106

4.4 Smith-Waterman 算法的细粒度并行实现................... 107

4.4.1 SWMMX 并行算法........................... 108

4.4.2 SWSSE2 并行算法........................... 109

4.4.3 条带型并行算法............................. 110

4.4.4 基于分块分治策略的并行算法..................... 111

4.4.5 其他并行算法.............................. 115

4.5 序列数据库搜索的粗粒度并行算法...................... 116

4.5.1并行FASTA.............................. 116

4.5.2 TurboBLAST.............................. 117

4.5.3 mpiBLAST ............................... 117

4.6 多序列比对的并行算法............................. 118

4.6.1 HMMER 及其并行算法........................ 118

4.6.2 ClustalW ................................ 119

4.6.3 ClustalW-MPI ............................. 121

4.6.4并行ClustalW、HTClustal和MULTICLUSTAL......... 121

4.7基于专用硬件FPGA的序列比对....................... 123

4.7.1 FPGA 硬件设备............................ 123

4.7.2 FPGA 并行计算............................ 124

XII 目录

第5 章基于字符串精确匹配的序列比较127 

5.1 模式的精确匹配与非精确匹配......................... 127

5.2 朴素的模式匹配算法.............................. 128

5.3 线性时间的字符串搜索算法.......................... 128

5.4 基于关键字树的模式集合匹配算法...................... 130

5.5 后缀树...................................... 132

5.6 后缀树的构造.................................. 134

5.7 后缀数组.................................... 135

5.8 基因组中的重复序列.............................. 136

5.9 后缀树用于搜索重复子串和独特子串..................... 136

5.10 最长重复序列的搜索算法........................... 137

5.11 广义后缀树................................... 138

5.12 最长公共子串问题............................... 138

5.13 k 次失配问题.................................. 139

5.14 小结....................................... 141

第6 章基因识别142 

6.1 基因识别与预测的计算方法.......................... 142

6.2 预测算法的准确性度量............................. 144

6.3 独立识别法................................... 145

6.3.1 用于基因识别的常用序列信号..................... 146

6.3.2 阅读框的相位及基因中的外显子类型................. 146

6.3.3 密码子使用偏好............................. 147

6.3.4 用序列特征图寻找剪接位点...................... 149

6.3.5 外显子链问题.............................. 151

6.4 基于比较的基因识别方法........................... 153

第7 章马氏链与隐马氏模型156 

7.1 马尔可夫链................................... 156

7.2 隐马尔可夫模型................................. 159

7.3 计算全概率的正向算法............................. 162

7.4 计算全概率的反向算法............................. 164

7.5解码问题的Viterbi算法............................ 166

7.5.1 各时间点独立考虑的最可能路径.................... 166

7.5.2 各时间点综合考虑的最可能路径.................... 167

7.6 模型参数的估计................................. 169

7.6.1 已知路径时的参数重估......................... 169

7.6.2 Baum-Welch 方法........................... 170

目录XIII

7.6.3 Baum-Welch 算法的推导....................... 173

7.6.4参数重估的Baldi-Chauvin梯度下降法................ 174

7.6.5 Baldi–Chauvin 梯度下降法的推导.................. 175

7.6.6 Mamitsuka 算法............................ 177

7.6.7 Mamitsuka 参数重估算法的推导................... 177

7.7带有哑状态的HMM.............................. 178

7.8谱HMM..................................... 181

7.9采用谱HMM进行多序列比对建模...................... 183

7.10利用HMM对基因识别问题进行建模..................... 184

第8 章序列进化的基本模型186 

8.1 核苷酸替代的进化模型............................. 186

8.2 连续时间下的进化模型............................. 190

8.2.1 Jukes-Cantor 进化模型......................... 190

8.2.2 Kimura 进化模型............................ 191

8.2.3 Felsenstein 进化模型.......................... 192

8.2.4 HKY 进化模型............................. 192

8.3 离散时间下的进化模型............................. 193

8.3.1 Jukes-Cantor 进化模型......................... 193

8.3.2 Kimura 进化模型............................ 194

8.3.3 Felsenstein 进化模型.......................... 196

8.3.4 HKY 进化模型............................. 197

第9 章分子进化树的重构198 

9.1 进化树的概念与术语.............................. 198

9.1.1 二叉树.................................. 198

9.1.2 树的标度................................ 198

9.1.3 有根树与无根树............................. 199

9.1.4 树的定根方法.............................. 199

9.1.5 物种树与基因树............................. 200

9.1.6 分歧经历的时间............................. 202

9.1.7 树的文本表示法............................. 202

9.1.8 进化树拓扑结构的计数......................... 202

9.1.9 不同树之间的拓扑距离......................... 204

9.1.10 一致树.................................. 206

9.1.11 分子进化树重构的基本流程...................... 207

9.2 进化树重构的简约类方法........................... 208

9.3 进化树重构的距离类方法........................... 213

XIV 目录

9.3.1 距离................................... 213

9.3.2 邻居加入方法.............................. 215

9.3.3 UPGMA 方法.............................. 223

9.3.4 误差平方和最小方法.......................... 226

9.4 进化树重构的统计类方法........................... 228

9.4.1 树的似然度............................... 229

9.4.2 Horner 规则与修剪算法........................ 230

9.4.3 算法加速的策略............................. 232

9.4.4 时间可逆性、树的根结点及分子钟树间的关联性........... 233

9.4.5 数据缺失及比对空位的处理...................... 234

9.4.6 进化速率关于位点可变的建模方法.................. 235

9.5 树拓扑空间的搜索技术............................. 238

9.5.1 最近邻居交换法............................. 238

9.5.2 子树剪枝嫁接法............................. 239

9.5.3 分支界限法............................... 240

9.6 似然度最大化的数值算法........................... 240

9.6.1 一元函数优化问题........................... 241

9.6.2 多变量优化问题............................. 242

9.6.3 进化树分析中参数估计的应用问题.................. 244

9.7 模型选择与假设检验问题........................... 245

9.7.1 似然比检验............................... 245

9.7.2 Akaike 信息准则方法.......................... 246

9.7.3 Bayes 信息准则方法.......................... 246

9.8 进化树拓扑结构的建模、估计与检验..................... 246

9.8.1 估计与假设检验............................. 246

9.8.2 Bootstrap 方法............................. 247

9.8.3 内部分支检验法............................. 252

9.8.4 KH 检验与修正............................. 253

9.8.5 简约类方法中的指标.......................... 254

第三篇蛋白质组学分析篇255 

第10章蛋白质的结构预测257 

10.1 蛋白质的层次性结构.............................. 257

10.2 常见的二级结构单元.............................. 258

10.2.1 螺旋结构................................ 259

10.2.2 β 折叠结构............................... 261

目录XV

10.2.3 β 转角结构............................... 262

10.3 蛋白质二级结构检测.............................. 263

10.4 蛋白质二级结构预测的计算方法........................ 265

10.4.1 早期的预测方法............................. 266

10.4.2 判别分析法............................... 266

10.4.3 基于神经网络的预测算法....................... 270

10.4.4 最近邻居法............................... 272

10.4.5基于谱HMM的结构预测....................... 273

10.4.6 结构预测的线索化方法......................... 273

10.4.7 结构预测的分子动力学方法...................... 274

10.4.8蛋白质折叠预测的格子化HP模型.................. 276

10.5 蛋白质二级结构预测算法的性能评价..................... 277

10.5.1 问题描述................................ 278

10.5.2 蛋白质结构预测算法性能评估指标.................. 279

10.5.3 性能评估指标对结构预测建模的指导作用.............. 283

10.5.4 各评估指标的比较及使用原则..................... 285

10.6 蛋白质结构的比对方法............................. 286

10.6.1 肽链局部结构特征的提取....................... 286

10.6.2 结构特征的规范化及广义后缀树的构建................ 288

10.6.3 蛋白质结构的比较与搜索....................... 289

第11章蛋白质序列鉴定的质谱分析291 

11.1 质谱技术.................................... 291

11.1.1 质谱仪的基本工作原理......................... 291

11.1.2 串联质谱仪............................... 292

11.2 质谱数据分析.................................. 292

11.2.1 串联质谱中的离子类型......................... 292

11.2.2 质谱图.................................. 294

11.2.3 碎片离子质量与母离子质量的关系.................. 295

11.2.4 理论质谱与实验质谱.......................... 296

11.3 实验质谱数据的预处理............................. 297

11.3.1 噪声过滤的基线确定方法....................... 298

11.3.2 同位素峰识别方法........................... 299

11.4 质谱比较的非概率型打分方法......................... 299

11.4.1 基于单峰或区间匹配的打分...................... 299

11.4.2 基于向量夹角余弦的打分....................... 299

11.4.3 基于信号互相关性的打分....................... 300

XVI 目录

11.4.4 基于排名的打分............................. 300

11.5 质谱比较的概率型打分方法.......................... 301

11.5.1 Bayes 类打分方法........................... 301

11.5.2 对数似然比打分方法.......................... 303

11.6 基于串联质谱的蛋白质鉴定.......................... 305

11.7 蛋白质鉴定的从头测序法........................... 307

11.7.1 从训练数据中学习离子类型信息.................... 308

11.7.2 质谱网络图............................... 309

11.7.3 为质谱网络图中的结点打分...................... 312

11.7.4 构建质谱网络图............................. 314

11.7.5 使用质谱网络图完成肽段的从头测序................. 314

11.7.6 为质谱网络图中的路径打分...................... 316

11.7.7 肽序列测定求解与反对称路径..................... 317

11.7.8 多个质谱进行组合以改进从头测序效果................ 318

11.7.9肽序列测定的PepNovo方法..................... 319

11.7.10 蛋白质从头测序技术的新进展.................... 322

11.8 含有修饰的质谱比较与肽鉴定......................... 324

11.8.1 含有突变和翻译后修饰的肽序列鉴定................. 324

11.8.2 分块搜索方法.............................. 324

11.8.3 质谱卷积与质谱比对.......................... 326

第四篇生物学网络分析篇333 

第12章蛋白质相互作用的预测335 

12.1 蛋白质之间的相互作用............................. 335

12.1.1 蛋白质相互作用的概述......................... 335

12.1.2 蛋白质相互作用网络.......................... 336

12.2 蛋白质相互作用测定的实验方法........................ 337

12.3 研究蛋白质相互作用的生物信息学分析方法................. 339

12.3.1 基于系统发育谱相似性的预测方法.................. 340

12.3.2 基于基因融合事件的预测方法..................... 341

12.3.3 基于基因邻接关系的预测方法..................... 342

12.3.4 基于进化信息的分析方法....................... 342

12.3.5 其他分析方法.............................. 350

12.4 蛋白质结构域水平的相互作用预测...................... 352

12.4.1 蛋白质的结构域............................. 352

12.4.2 基于共同进化相关性的结构域相互作用分析方法........... 353

目录XVII

12.4.3基于PPI网络进行结构域相互作用预测............... 353

12.5 小结....................................... 358

第13章生物学网络的模块划分359 

13.1 引言....................................... 359

13.2 复杂网络的结构特征.............................. 361

13.2.1 常用网络结构特征度量指标...................... 361

13.2.2 复杂网络的三个系统化特征...................... 364

13.2.3 刻画网络结构特征的其他指标..................... 364

13.3 复杂网络结构特征度量指标的计算方法.................... 366

13.4 生物学网络结构分析的并行计算........................ 369

13.5 复杂网络的结构模块划分及生物学网络功能模块挖掘............ 370

13.6 生物学网络模块划分的传统聚类方法..................... 372

13.6.1 ADJW 层次式聚类算法........................ 372

13.6.2 Kernighan-Lin 聚类算法........................ 373

13.6.3基于边介数的聚类:GN算法..................... 374

13.6.4 快速分裂算法.............................. 375

13.6.5 Newman 快速算法........................... 375

13.6.6 层次式聚类结果的可视化输出..................... 376

13.7 生物学网络模块划分的谱聚类方法...................... 377

13.7.1 基于邻接矩阵的谱分析......................... 378

13.7.2 谱平分法................................ 379

13.7.3基于Normal矩阵的谱平分法..................... 380

13.8 生物学网络模块划分的混合式聚类算法.................... 382

13.9 网络模块划分结果的评价........................... 384

第14章大规模网络的数据挖掘技术385 

14.1 聚类分析.................................... 385

14.1.1 相似性测度............................... 385

14.1.2 聚类准则................................ 386

14.1.3 聚类算法................................ 387

14.2 层次聚类法................................... 388

14.2.1 单一链接聚类法............................. 388

14.2.2 完全链接聚类法............................. 389

14.2.3 平均链接聚类法............................. 389

14.2.4 平均簇链接法.............................. 390

14.2.5 组对质心法............................... 390

14.2.6 Ward 层次式聚类法.......................... 390

XVIII目录

14.3K均值聚类方法................................391

14.4核分析方法...................................393

14.4.1线性分类器与非线性分类器......................393

14.4.2支持向量机...............................400

14.4.3支持向量机的应用与实践.......................403

14.5基于核的K均值聚类方法...........................407

14.6谱聚类方法...................................408

14.6.1常用图论记号与概念..........................409

14.6.2基于数据相似性构建图结构......................410

14.6.3拉普拉斯矩阵及其性质.........................411

14.6.4谱聚类算法...............................414

14.6.5从最小割的角度解释谱聚类......................416

14.6.6从随机游动角度解释谱聚类......................422

14.6.7从矩阵扰动理论角度解释谱聚类....................426

14.6.8从矩阵外形缩减角度解释谱聚类....................429

14.6.9谱聚类中如何确定最终簇的数目....................433

14.7K均值聚类与谱聚类的统一..........................434

14.7.1K均值聚类算法的形式化.......................434

14.7.2最小化规范割问题与核K均值聚类的等价性主题索引人名索引插图索引表格索引算法索引参考文献

............ 436 438 462