目录
第一章引言: 为什么资产定价需要机器学习
第一节资产定价的核心问题: 为什么不同的资产会有
不同的收益
第二节当资产定价遇到机器学习
第三节相关学术文献介绍
第四节相关业界应用场景
参考文献
第二章资产定价的核心问题: 股票预期收益率
第一节投资组合分析
第二节因子投资
第三节中国因子模型
第四节异象性因子的检验
参考文献
第三章机器学习模型评估
第一节过拟合与欠拟合
第二节偏差和方差的权衡
第三节回归问题机器学习模型的评价指标
第四节机器学习的超参数调校
第四章机器学习模型Ⅰ: 线性模型
第一节多元线性模型
第二节带惩罚项的线性模型
第三节降维视角的线性模型
第五章机器学习模型Ⅱ: 回归树模型
第一节回归树
第二节随机森林
第三节梯度提升树
第六章机器学习模型Ⅲ: 神经网络模型
第一节神经网络模型介绍
第二节激活函数
第三节优化算法
第四节神经网络的训练
第五节全连接神经网络模型的代码实现
参考文献
第七章理解机器学习在中国股票市场应用的
制度背景
第一节中国股票市场概述
第二节中国股票市场重要制度
第三节中国股票市场特殊制度
第八章为机器学习模型准备数据
第一节数据来源与样本选择
第二节股票收益率数据分析
第三节财务数据处理
第四节数据预处理步骤
第五节实证中使用的股票特征变量构造介绍
参考文献
第九章机器学习在中国金融市场中的实证应用
第一节机器学习模型有效性验证: 蒙特卡洛模拟
方法
第二节机器学习算法在中国A股市场的实证结果
第三节IPCA模型在中国A股市场的实证结果
参考文献
第十章结语与未来展望
第一节机器学习模型与另类数据
第二节机器学习模型与其他资产定价问题
参考文献