图书推荐

深度强化学习(Deep Reinforcement Leaming,DRL) 是深度学习和强化学习的巧
妙结合,是一种新兴的通用人工智能技术,是人工智能迈向智能决策的重要一步,是机器学习的热点,潜力无限,典型的成功案例是DeepMind AlphaGo和OpenAI Five。深度强化学习可看作在深度学习非线性函数超强拟合能力下,构成的一种新增强算法。目前就深度强化学习而言,需要从三个方面进行积累:第一,深度强化学习的理论基础:第二,深度强化学习的仿真平台:第三,产业落地的项目和产品。
从深度强化学习库以及框架看,学术界PyTorch和工业界Tensor Flow深度学习框架都将前沿成果集成进来。目前已有一些经典的深度强化学习文献和著作,但将深度强化学习理论、工具和实战相结合的著作还是很少,本书的出版恰好填补了这方面的空白。
本书图文并茂地对晦涩难懂的深度强化学习理论进行描述,并结合大量的案例
和应用程序,引导读者边思考边实践,从而逐步加深对深度强化学习的理解,并将这些新方法、新理论和新思想用于自己的研究。本书可作为从事智能机器人控制、计算机视觉、自然语言处理和自动驾驶系统/无人车等领域研究工作的工程师、计算机科学家和统计学家的参考书。