"从2013年开始,作者及其团队开始使用神经网络和模糊系统等智能技术研究人机交互控制。2016年,作者将更多注意力放在如何利用强化学习解决人机交互问题上。经过四年的工作,他们在关节空间和任务空间中提出了基于模型和无模型的阻抗和导纳控制的结果,还分析了闭环系统,并且讨论了无模型上优机器人交互控制和基于强化学习的位置受力控制设计。他们研究了庞大的离散时间空间和连续时间空间中的强化学习方法。对于冗余机器人的控制,他们使用多智能体强化学习来解决,并分析强化学习的收敛性。将最坏情况下不确定性的鲁棒人机交互控制转化为“H2/H∞问题”,采用强化学习和神经网络设计并实现上优控制器。
本书假设读者熟悉基于经典和高级控制器进行机器人交互控制的一些应用,将进一步对系统识别、基于模型和无模型的机器人交互控制器进行系统性分析。本书适用于研究生以及执业工程师。阅读本书需要掌握的先决知识是:机器人控制、非线性系统分析,特别是Lyapunov方法、神经网络、优化技术和机器学习。本书还适用于许多对机器人和控制感兴趣的研究人员和工程师。"