贝叶斯深度学习、深度集成学习、集成学习、贝叶斯推理等这些术语以及这些理论的推理过程,会让人望而生畏,畏葸不前。不过,本书并不是一本讨论贝叶斯深度学习理论的著作,而是将理论进行了简化,着重讲述其代码实现,以及贝叶斯深度学习工具集使用方面的实战技巧。本书内容共分三部分,第一部分(第 1~3 章)是基础概念和理论,主要介绍深度学习的发展历史和局限性,以及它与贝叶斯推理结合的时机、贝叶斯推理基础、深度学习基础;第二部分(第4~7 章)主要介绍贝叶斯深度学习的基本思想、使用原则、标准工具集代码实现、实际考虑因素;第三部分(第 8~9 章),讲述贝叶斯深度学习的应用和发展趋势。本书内容新颖、实战性强,填补了目前该领域的市场空白。此外,如果读者想进一步深入学习贝叶斯推理、集成学习等方面的主题,可参阅译者翻译的《概率图模型原理与应用(第2 版)》《Python 贝叶斯建模与计算》和《集成学习实战》等图书。