前 言
在过去的十年中,机器学习领域取得了长足的进步,并因此激发了公众的想象力。但我们必须记住,尽管这些算法令人印象深刻,但它们并非完美无缺。本书旨在通过平实的语言介绍如何在深度学习中利用贝叶斯推理,帮助读者掌握开发“知其所不知”模型的工具。这样,开发者就能开发出更鲁棒的深度学习系统,以便更好地满足现今基于机器学习的应用需求。
本书读者对象
本书面向从事机器学习算法开发和应用的研究人员、开发人员和工程师,以及希望开始使用不确定性感知深度学习模型的人员。
本书主要内容
第1章“深度学习时代的贝叶斯推理”介绍传统深度学习方法的用例和局限性。
第2章“贝叶斯推理基础”讨论贝叶斯建模和推理,同时探索了贝叶斯推理的黄金标准机器学习方法。
第3章“深度学习基础”介绍深度学习模型的主要构建模块。
第4章“贝叶斯深度学习介绍”结合第2章和第3章介绍的概念讨论贝叶斯深度学习。
第5章“贝叶斯深度学习原理方法”介绍贝叶斯神经网络近似的原理方法。
第6章“使用标准工具箱进行贝叶斯深度学习”介绍利用常见的深度学习方法推进模型不确定性估计。
第7章“贝叶斯深度学习的实际考虑因素”探讨和比较第5章和第6章介绍的方法的优缺点。
第8章“贝叶斯深度学习应用”概述贝叶斯深度学习的各种实际应用,如检测分布外数据或数据集漂移的鲁棒性。
第9章“贝叶斯深度学习的发展趋势”讨论贝叶斯深度学习的一些最新发展趋势。
如何充分利用本书
为了充分利用本书,你需要具备一定的机器学习和深度学习先验知识,并熟悉贝叶斯推理的相关概念。掌握一些使用Python和机器学习框架(如TensorFlow或PyTorch)的实用知识也很有价值,但并非必要。
建议使用Python 3.8或更高版本,因为本书所有代码都已经通过Python 3.8的测试。第1章将给出为本书中的示例代码设置环境的详细说明。
下载示例代码文件和彩色图片
本书的代码包也托管在GitHub上,网址是https://github.com/PacktPublishing/Enhancing- Deep-Learning-with-Bayesian-Inference。如果代码有更新,将在现有的GitHub仓库中进行更新。读者也可以通过扫描封底的二维码下载本书的示例代码文件。
另外,我们还提供了一个PDF文件,其中包含本书所有截图/图表的彩色图片,通过扫描封底的二维码可下载该PDF文件。本书文前页中的“彩插”部分也列出了书中提到的部分彩色图片,供读者在阅读时方便查看。