Hadoop权威指南:大数据的存储与分析(第4版)
引领大数据与云计算,为读者创造巨大价值的高端技术类畅销书,累计销量超过10万册

作者:Tom White著 王海,华东,刘喻,吕粤海 译

定价:148元

印次:4-16

ISBN:9787302465133

出版日期:2017.07.01

印刷日期:2024.10.29

图书责编:文开琪

图书分类:零售

电子书
在线购买
分享
内容简介
作者简介
前言序言
资源下载
查看详情 查看详情 查看详情

本书结合理论和实践,由浅入深,全方位介绍了Hadoop这一高性能的海量数据处理和分析平台。全书5部分24章,第Ⅰ部分介绍Hadoop基础知识,主题涉及Hadoop、MapReduce、Hadoop分布式文件系统、YARN、Hadoop的I/O操作。第Ⅱ部分介绍MapReduce,主题包括MapReduce应用开发;MapReduce的工作机制、MapReduce的类型与格式、MapReduce的特性。第Ⅲ部分介绍Hadoop的运维,主题涉及构建Hadoop集群、管理Hadoop。第Ⅳ部分介绍Hadoop相关开源项目,主题涉及Avro、Parquet、Flume、Sqoop、Pig、Hive、Crunch、Spark、HBase、ZooKeeper。第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce的数据处理API)。 本书是一本权威、全面的Hadoop参考书和工具书,阐述了Hadoop生态圈的最新发展和应用,程序员可以从中探索海量数据集的存储和分析,管理员可以从中了解Hadoop集群的安装和运维。

作者简介Tom White是最杰出的Hadoop专家之一。自2007年2月以来,Tom White一直是Apache Hadoop的提交者(committer),也是Apache软件基金会的成员。Tom是Cloudera的软件工程师,他是Cloudera的首批员工,对Apache和Cloudera做出了举足轻重的贡献。在此之前,他是一名独立的Hadoop顾问,帮助公司搭建、使用和扩展Hadoop。他是很多行业大会的专题演讲人,比如ApacheCon、OSCON和Strata。Tom在英国剑桥大学获得数学学士学位,在利兹大学获得科学哲学硕士学位。他目前与家人居住在威尔士。译者简介王海博士,解放军理工大学通信工程学院教授,博导,教研中心主任,长期从事无线自组网网络的设计与研发工作,主持国家自然科学基金、国家863计划课题等多项国家级课题,近5年获军队科技进步二等奖1项,三等奖6项,作为第一发明人申请国家发明专利十余项,发表学术论文50余篇。 华东博士,现任南京医科大学计算机教研室教师,一直致力于计算机辅助教学的相关技术研究,陆续开发了人体解剖学网络自主学习考试平台、诊断学自主学习平台和面向执业医师考试的预约化考试平台等系统,并在各个学科得到广泛的使用,获得全国高等学校计算机课件评比一等奖和三等奖各一项。主编、副主编教材两部,获发明专利一项、软件著作权多项。 刘喻博士,长期从事软件开发、软件测试和软件工程化管理工作,目前任教于清华大学软件所。 吕粤海,长期从事军事通信网络技术研究与软件开发工作,先后通过华为光网络高级工程师认证、思科网络工程师认证。

前言 数学科普作家马丁·加德纳(Martin Gardner)曾经在一次采访中谈到: “在我的世界里,只有微积分。这是我的专栏取得成功的奥秘。我花了很多时间才明白如何以大多数读者都能明白的方式将自己所知道的东西娓娓道来。” ① 这也是我对Hadoop的诸多感受。它的内部工作机制非常复杂,是一个集分布式系统理论、实际工程和常识于一体的系统。而且,对门外汉而言,Hadoop更像是“天外来客”。 但Hadoop其实并没有那么让人费解,抽丝剥茧,我们来看看它的“庐山真面目”。Hadoop提供的用于处理大数据的工具都非常简单。如果说这些工具有一个共同的主题,那就是它们更抽象,为(有大量数据需要存储和分析却没有足够的时间、技能或者不想成为分布式系统专家的)程序员提供一套组件,使其能够利用Hadoop来构建一个处理数据的基础平台。 这样一个简单、通用的特性集,促使我在开始使用Hadoop时便明显感觉到Hadoop真的值得推广。但最开始的时候(2006年初),安装、配置和Hadoop应用编程是一门高深的艺术。之后,情况确实有所改善:文档增多了;示例增多了;碰到问题时,可以向大量活跃的邮件列表发邮件求助。对新手而言,最大的障碍是理解Hadoop有哪些能耐,它擅长什么,它如何使用。这些问题使我萌发了写作本书的动机。 Apache Hadoop社区的发展来之不易。从本书的第1版发行以来,Hadoop项目如雨后春笋般发展兴旺。“大数据”已成为大家耳熟能详的名词术语。②当前,软件在可用性、性能、可靠性、可扩展性和可管理性方面都实现了巨大的飞跃。在Hadoop平台上搭建和运行的应用增长...

暂无课件

样章下载

暂无网络资源

扫描二维码
下载APP了解更多

目录
荐语
查看详情 查看详情
目录

第Ⅰ部分  Hadoop基础知识

第1章  初识Hadoop 3

1.1  数据!数据! 3

1.2  数据的存储与分析 5

1.3  查询所有数据 6

1.4  不仅仅是批处理 7

1.5  相较于其他系统的优势 8

1.5.1  关系型数据库管理系统 8

1.5.2  网格计算 10

1.5.3  志愿计算 11

1.6  Apache Hadoop发展简史 12

1.7  本书包含的内容 16

第2章  关于MapReduce 19

2.1  气象数据集 19

2.2  使用Unix工具来分析数据 21

2.3  使用Hadoop来分析数据 22

2.3.1  map和reduce 23

2.3.2  Java MapReduce 24

2.4  横向扩展 31

2.4.1  数据流 31

2.4.2  combiner函数 35

2.4.3  运行分布式的

MapReduce作业 37

2.5  Hadoop Streaming 37

2.5.1  Ruby版本 38

2.5.2  Python版本 40

第3章  Hadoop分布式文件系统 42

3.1  HDFS的设计 42

3.2  HDFS的概念 44

3.2.1  数据块 44

3.2.2  namenode和datanode 45

3.2.3  块缓存 46

3.2.4  联邦HDFS 47

3.2.5  HDFS的高可用性 47

3.3  命令行接口 50

3.4  Hadoop文件系统 52

3.5  Java接...

本书结合理论和实践,由浅入深,全方位介绍了Hadoop 这一高性能的海量数据处理和分析平台。全书5部分24 章,第Ⅰ部分介绍Hadoop 基础知识,第Ⅱ部分介绍MapReduce,第Ⅲ部分介绍Hadoop 的运维,第Ⅳ部分介绍Hadoop 相关开源项目,第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce 的数据处理API)。本书是一本专业、全面的Hadoop 参考书和工具书,阐述了Hadoop 生态圈的新发展和应用,程序员可以从中探索海量数据集的存储和分析,管理员可以从中了解Hadoop 集群的安装和运维。