





定价:59元
印次:1-2
ISBN:9787302644156
出版日期:2023.10.01
印刷日期:2024.09.24
图书责编:董柳吟
图书分类:教材
本书系统、全面地介绍了用于求解**化问题的10种智能启发式算法的基本思想、设计原理及应用案例,分别为遗传算法、蚁群算法、模拟退火算法、禁忌搜索算法、大邻域搜索算法、变邻域搜索算法、迭代局部搜索算法、粒子群算法、人工免疫算法及人工神经网络。 本书可作为高等院校计算机科学与技术、人工智能等理工类相关专业本科生及研究生教材,也可作为物流管理、经济管理等管理类相关专业本科生及研究生教材。
邹晔(1991-),女,博士,湖南工商大学前沿交叉学院讲师。于2020年毕业于华中科技大学,获管理科学与工程专业博士学位,主要从事组合优化问题、深度强化学习、智能算法设计等研究。近年来,主持湖南省教育厅优秀青年项目1项、湖南省自然科学基金青年基金项目1项,并在Computers & Industrial Engineering、International Journal of Sustainable Transportation、《中国安全科学学报》、《公路交通科技》、《软科学》以及《中国安全生产科学技术》等国内外知名期刊发表多篇学术论文。于2021年带领学生团队参加大学生创新创业训练计划项目并获得省级立项。
前言 启发式优化算法是相对于精确算法而言的。一个问题的精确算法,是指求得该问题的精确解,而启发式算法则是基于直观或经验所构造的算法,在可接受的成本(计算时间、占用内存等)下寻找最优解,但不一定能保证所得解的可行性和精确性。启发式算法一般具有严密的理论依据,而不是仅凭专家经验,理论上可在一定时间内找到精确解或近似精确解。 启发式算法的兴起源于实际问题的需要。随着20世纪70年代算法复杂性理论的完善,人们不再强调花费大量的时间求得精确解,只要能在较短的时间内求得相对较好的结果,也可以接受。因此,20世纪80年代初兴起的启发式优化算法在当今得到了巨大的发展。 本书第1章对最优化方法的求解对象即最优化问题的定义及分类进行了介绍,并分析了最优化方法的特点及其分类,再重点介绍最优化方法之一的启发式算法的定义及特点。第2章介绍了遗传算法的思想及特点、设计原则,并重点分析了遗传算法在01背包问题、函数极值问题、旅行商问题、带时间窗的车辆路径问题及机器学习领域中的应用。第3章介绍了蚁群算法的思想及特点,并重点分析了蚁群算法在旅行商问题及函数极值问题中的应用。第4章首先介绍了模拟退火算法的 思想及特点、设计原则,然后介绍了该算法在经典优化问题如旅行商问题、图像处理等问题中的应用,并针对该算法在实际问题如电商物流配送问题、登机口分配问题中的具体应用进行了分析。第5章首先介绍了禁忌搜索算法的基本思想,然后介绍了该算法各个组成模块如初始解、邻域、禁忌表等的设计思路,最后重点分析了禁忌搜索算法在旅行商问题、双层级医疗设施选址问题及机场外航服务人员班型生成问题...
目录
第1章绪论
1.1最优化问题定义及分类
1.1.1最优化问题定义
1.1.2最优化问题分类
1.2最优化方法特点及分类
1.2.1最优化方法特点
1.2.2最优化方法分类
1.3启发式算法定义及特点
1.3.1启发式算法定义
1.3.2启发式算法特点
1.4本章小结
1.5习题
第2章遗传算法
2.1遗传算法思想及特点
2.1.1算法思想
2.1.2算法特点
2.2遗传算子
2.2.1选择算子
2.2.2交叉算子
2.2.3变异算子
2.3遗传算法设计原则
2.3.1适应度和初始群体选取原则
2.3.2参数设计原则
2.4遗传算法的应用
2.4.1遗传算法在01背包问题中的应用
2.4.2遗传算法在函数极值问题中的应用
2.4.3遗传算法在旅行商问题中的应用
2.4.4遗传算法在机器学习中的应用
2.4.5遗传算法在其他领域中的应用
2.5本章小结
2.6习题
第3章蚁群算法
3.1蚁群算法思想及特点
3.1.1算法思想
3.1.2算法特点
3.2蚁群算法的应用
3.2.1蚁群算法在旅行商问题中的应用
3.2.2蚁群算法在函数极值问题中的应用
3.3本章小结
3.4习题
第4章模拟退火算法
4.1模拟退火算法思想及特点
4.1.1算法思想
4.1.2算法特点
4.2模拟退火算法设计原则
4.3模拟...