目录
第1章绪论
参考文献
第2章经典的固定门限检测
2.1雷达自动检测的基本问题和原理
2.1.1最大检测距离
2.1.2虚警率
2.1.3目标雷达截面积的Swerling起伏模型
2.1.4自动检测的经典问题——固定门限检测
2.2匹配滤波
2.2.1白噪声背景下的匹配滤波
2.2.2匹配滤波与相关接收
2.2.3相参脉冲串信号的匹配滤波
2.3单脉冲检测
2.3.1对非起伏目标的单脉冲线性检测
2.3.2对Swerling起伏目标的单脉冲线性检测
2.4多脉冲检测
2.4.1二元检测
2.4.2线性检测
2.4.3相参脉冲串检测
2.5小结
参考文献
第3章均值类CFAR检测器
3.1引言
3.2基本模型描述
3.3CA-CFAR检测器
3.4GO,SO-CFAR检测器
3.5WCA-CFAR检测器
3.6采用对数检波的CA-CFAR检测器
3.7单脉冲线性CA-CFAR检测器
3.8多脉冲CA-CFAR检测器
3.8.1双门限CA-CFAR检测器
3.8.2多脉冲线性检测CA-CFAR检测器
3.9ML类CFAR检测器在均匀杂波背景中的性能
3.10ML类CFAR检测器在多目标环境中的性能
3.11ML类CFAR检测器在杂波边缘环境中的性能
3.12比较与总结
参考文献
第4章有序统计类CFAR检测器
4.1引言
4.2基本模型描述
4.3OS-CFAR检测器
4.4CMLD-CFAR检测器
4.5TM-CFAR检测器
4.6其他OS类CFAR检测器
4.6.1最大选择类有序统计CFAR检测器
4.6.2OSGO-CFAR和OSSO-CFAR检测器
4.6.3S-CFAR检测器
4.7OS类CFAR检测器在均匀杂波背景中的性能
4.8OS类CFAR检测器在多目标环境中的性能
4.9OS类CFAR检测器在杂波边缘背景中的性能
4.10比较与总结
参考文献
第5章采用自动筛选技术的GOS类CFAR检测器
5.1引言
5.2基本模型描述
5.2.1OS-OS类CFAR检测器的模型描述
5.2.2OS-CA类检测器的模型描述
5.2.3TM-TM类检测器的模型描述
5.3GOSCA,GOSGO,GOSSO-CFAR检测器
5.3.1GOSCA-CFAR检测器
5.3.2GOSGO-CFAR检测器
5.3.3GOSSO-CFAR检测器
5.4MOSCA,OSCAGO,OSCASO-CFAR检测器
5.4.1MOSCA-CFAR检测器
5.4.2OSCAGO-CFAR检测器
5.4.3OSCASO-CFAR检测器
5.5MTM,TMGO,TMSO-CFAR检测器
5.5.1MTM-CFAR检测器
5.5.2TMGO-CFAR检测器
5.5.3TMSO-CFAR检测器
5.6GOS类CFAR检测器在均匀背景和多目标环境中的性能
5.6.1GOS类CFAR检测器在均匀背景中的性能
5.6.2GOS类CFAR检测器在多目标环境中的性能
5.7GOS类CFAR检测器在杂波边缘环境中的性能
5.7.1GOSCA-CFAR检测器在杂波边缘环境中的性能
5.7.2GOSGO-CFAR和GOSSO-CFAR检测器在杂波边缘
环境中的性能
5.7.3MOSCA-CFAR检测器在杂波边缘环境中的性能
5.7.4OSCAGO,OSCASO-CFAR检测器在杂波边缘环境中的性能
5.7.5MTM,TMGO-CFAR检测器在杂波边缘环境中的性能
5.8比较与总结
参考文献
第6章自适应CFAR检测器
6.1引言
6.2CCA-CFAR检测器
6.3HCE-CFAR检测器
6.4E-CFAR检测器
6.4.1E-CFAR检测器结构
6.4.2E-CFAR检测器在均匀杂波背景中的性能
6.4.3E-CFAR检测器在多目标环境中的性能
6.5OSTA-CFAR检测器
6.5.1OSTA-CFAR检测器基本原理
6.5.2OSTA-CFAR检测器在杂波边缘环境中的性能
6.5.3OSTA-CFAR检测器在多目标环境中的性能
6.6VTM-CFAR检测器
6.6.1VTM-CFAR检测器基本原理
6.6.2VTM-CFAR检测器在均匀杂波背景中的性能
6.6.3VTM-CFAR检测器在多目标环境中的性能
6.6.4VTM-CFAR检测器在杂波边缘环境中的性能
6.6.5VTM-CFAR检测器的参数选择
6.7Himonas的一系列CFAR检测器
6.7.1GCMLD-CFAR检测器
6.7.2GO/SO-CFAR检测器
6.7.3ACMLD-CFAR检测器
6.7.4GTL-CMLD-CFAR检测器
6.7.5ACGO-CFAR检测器
6.8VI-CFAR检测器
6.8.1VI-CFAR检测器在不同背景中的应用
6.8.2VI-CFAR检测器的性能分析
6.9其他的自适应CFAR检测器
6.9.1双重自适应CFAR检测器
6.9.2AC-CFAR检测器
6.9.3改进的CA-CFAR检测器
6.9.4自适应长度CFAR检测器
6.9.5ACCA-ODV-CFAR检测器
6.10比较与小结
参考文献
第7章韦布尔和对数正态杂波背景中的CFAR检测器
7.1引言
7.2Log-t CFAR检测器
7.2.1对数正态分布中的Log-t CFAR检测器
7.2.2韦布尔分布中的Log-t CFAR检测器
7.3韦布尔分布中有序统计类CFAR检测器
7.3.1OS-CFAR检测器在韦布尔背景中的检测性能
7.3.2OSGO-CFAR检测器在韦布尔背景中的检测性能
7.3.3韦布尔背景中Weber-Haykin恒虚警检测算法
7.3.4用参考单元采样的期望和中值估计c的方法
7.4MLH-CFAR检测器
7.4.1形状参数已知的韦布尔杂波背景中的MLH-CFAR检测器
7.4.2未知形状参数的韦布尔分布杂波背景中的MLH-CFAR检测器
7.4.3检测概率和CFAR损失
7.5BLUE-CFAR检测器
7.5.1韦布尔杂波背景中的BLUE检测器
7.5.2对数正态杂波背景中的BLUE检测器
7.5.3其他的方法和研究
7.6比较与总结
参考文献
第8章复合高斯分布杂波中的CFAR处理
8.1引言
8.2复合高斯分布
8.2.1复合高斯分布模型
8.2.2K分布包络杂波模型
8.2.3相干相关K分布杂波模型
8.2.4K分布杂波的仿真
8.3K分布海杂波加热噪声中的检测性能分析
8.3.1K分布与记录数据的匹配
8.3.2杂波加噪声中目标检测性能的计算
8.3.3K分布海杂波加热噪声中的固定阈值和理想CFAR检测性能分析
8.4经典CFAR检测器在K分布杂波中的性能分析
8.4.1调制过程不相关时K分布杂波中的CFAR检测
8.4.2调制过程完全相关时的K分布杂波中的CFAR检测
8.4.3调制过程部分相关时的K分布杂波中的CFAR检测
8.5复合高斯杂波中的最优CFAR检测器
8.5.1复合高斯杂波包络中的最优CFAR检测
8.5.2复合高斯杂波中的最优相参CFAR检测
8.6小结
参考文献
第9章非参量CFAR处理
9.1引言
9.2非参量检测器的渐近相对效率
9.3单样本非参量检测器
9.3.1最优参量检测器(高斯背景)
9.3.2符号检测器
9.3.3Wilcoxon检测器
9.4两样本非参量检测器
9.4.1广义符号检测器
9.4.2Mann-Whitney(MW)检测器
9.4.3Savage检测器与修正的Savage检测器
9.4.4秩方(RS)检测器与修正的秩方(MRS)检测器
9.4.5几种非参量检测器的渐近相对效率
9.4.6非参量检测器采用有限样本时的检测性能
9.5次优秩非参量检测器
9.5.1局部最优秩检测器
9.5.2次优秩检测器
9.5.3次优秩检测器的性能分析
9.6比较与总结
参考文献
第10章杂波图CFAR处理
10.1引言
10.2Nitzberg杂波图技术
10.2.1Nitzberg杂波图检测的原理
10.2.2Nitzberg杂波图ADT值和虚警指标对w取值的约束
10.3杂波图单元平均CFAR平面检测技术
10.3.1基本模型描述
10.3.2均匀背景中的性能分析
10.3.3面技术与点技术的性能比较
10.4混合CM/L-CFAR杂波图检测技术
10.4.1基本模型
10.4.2均匀背景中的性能
10.4.3存在干扰目标时的性能
10.5比较和总结
参考文献
第11章变换域CFAR处理
11.1引言
11.2信号和杂波噪声的DFT处理
11.3频域中的CA-CFAR检测器
11.3.1频域CA-CFAR检测器
11.3.2MTI-FFT-频域CA-CFAR方案
11.4双通道频域CFAR检测器
11.4.1系统结构
11.4.2系统工作性能
11.5频域OEP检测器
11.5.1OEP检测器的系统结构
11.5.2ZP的频域特性
11.5.3OEP检测器的虚警概率
11.5.4OEP检测器的分析结果
11.6小波域CFAR检测器
11.6.1基于离散小波变换的CM-CFAR检测方法
11.6.2基于正交小波变换的CA-CFAR检测方法
11.6.3基于正交小波变换的CFAR线性检测方法
11.7提高MTD雷达增益的方法
11.7.1基于FFT-DWT提高雷达处理增益的方法
11.7.2基于WFFT-DWT提高雷达处理增益的方法
11.7.3基于ZP-FFT提高雷达处理增益的方法
11.8比较与小结
参考文献
第12章距离扩展目标检测
12.1引言
12.2距离扩展目标的信号模型
12.2.1秩1信号模型
12.2.2多秩子空间信号模型
12.3复合高斯杂波中多秩距离扩展目标的子空间检测器
12.3.1问题描述
12.3.2广义匹配子空间检测器的设计
12.3.3广义匹配子空间检测器虚警概率的计算
12.3.4广义匹配子空间检测器的自适应问题
12.3.5检测器的性能分析
12.4复合高斯杂波加热噪声中的距离扩展目标检测器
12.4.1问题描述
12.4.2热噪声的等效处理
12.4.3复合高斯杂波加热噪声中距离扩展目标检测器的设计
12.4.4检测器的性能分析
12.5SαS分布杂波中距离扩展目标检测器
12.5.1SαS分布及PFLOM变换
12.5.2问题描述
12.5.3基于PFLOM变换的距离扩展目标检测器
12.5.4SαS分布杂波中的二元积累柯西检测器
12.6比较与小结
参考文献
第13章多传感器分布式CFAR处理
13.1引言
13.2基于局部二元判决的多传感器分布式CFAR检测
13.2.1分布式单元平均恒虚警率(CA-CFAR)检测
13.2.2分布式有序统计恒虚警率(OS-CFAR)检测
13.2.3分布CFAR检测应用举例
13.3基于局部检测量的多传感器分布式CFAR检测
13.3.1基于R类局部检测统计量的分布式CFAR检测
13.3.2基于S类和P类局部检测统计量的分布式CFAR检测
13.4小结
参考文献
第14章其他的CFAR处理方法
14.1引言
14.2阵列信号的CFAR处理
14.2.1Reed,Mallett和Brennan的工作
14.2.2基于广义似然比检验的算法
14.2.3自适应匹配滤波CFAR检测器
14.2.4其他相关研究
14.3相关信号的CFAR处理
14.4极化CFAR处理
14.5应用图像处理技术的CFAR处理
14.6α稳定分布背景下的CFAR处理
14.7雷达其他部分的CFAR处理
14.8小结
参考文献
第15章回顾、建议与展望
15.1回顾
15.1.1形成了CFAR处理理论体系
15.1.2各领域中CFAR方案性能比较
15.1.3提出具有自动筛选技术的GOS类CFAR检测器,
建立了统一模型
15.1.4将CFAR的频域处理推广到了变换域处理
15.1.5将CFAR拓展到多传感器分布式检测和扩展目标
检测等新领域
15.2问题与建议
15.2.1综合评价性能的准则
15.2.2更加定量化的性能分析
15.2.3背景模型和复杂背景中的性能分析
15.2.4在距离和方位向上选取两维参考单元
15.2.5加强对目标特性的研究
15.3研究方向展望
15.3.1各种杂波背景中的CFAR处理和杂波背景的
自动识别
15.3.2变换域的CFAR处理技术
15.3.3综合图像处理和视觉处理技术的CFAR处理
15.3.4检测与跟踪联合的CFAR处理技术
15.3.5智能信号处理技术与CFAR处理的结合
15.3.6相控阵雷达的CFAR处理
15.3.7雷达自动目标检测CFAR处理技术的工程实现
参考文献
英文缩略语
CONTENTS
Chapter 1Preface
Reference
Chapter 2Classical Detection with Fixed Threshold
2.1Fundamental Problems and Principles of Radar Automatic Detection
2.1.1Maximum Detection Range
2.1.2False Alarm Rate
2.1.3Swerling-fluctuation Models of Target Radar Cross Section
2.1.4Classical Issue of Automatic Detection—the Detection
with Fixed Threshold
2.2Matched Filtering
2.2.1Matched Filtering in White Gaussian Noise Background
2.2.2Matched Filtering and Correlated Receiving
2.2.3Matched Filter for Coherent Pulse-Train Signals
2.3Single-Pulse Detection
2.3.1Single-Pulse Linear Detection for Non-fluctuation Target
2.3.2Single-Pulse Linear Detection for Swerling-fluctuation Target
2.4Multiple-Pulse Detection
2.4.1Binary Detection
2.4.2Linear Detection
2.4.3Detection of Coherent Pulse-Train Signals
2.5Summary
Reference
Chapter 3The CFAR Detectors Based on Mean Level
3.1Introduction
3.2Description of Basic Models
3.3CA-CFAR Detector
3.4GO,SO-CFAR Detector
3.5WCA-CFAR Detector
3.6CA-CFAR Scheme with Logarithmic-Law Detector
3.7CA-CFAR Scheme with Single-Pulse Linear Detector
3.8CA-CFAR Detector for Multiple Pulses
3.8.1CA-CFAR Detector with Double Threshold
3.8.2CA-CFAR Detector with Linear Detection for Multiple Pulses
3.9Performance of ML-CFAR Detectors in Homogeneous Background
3.10Performance of ML-CFAR Detectors in Multiple Target Situations
3.11Performance of ML-CFAR Detectors in Clutter Edge Situation
3.12Comparison and Summary
Reference
Chapter 4The CFAR Detectors Based on Order Statistics
4.1Introduction
4.2Description of Basic Models
4.3OS-CFAR Detector
4.4CMLD-CFAR Detector
4.5TM-CFAR Detector
4.6Other CFAR Detectors based on Order Statistics
4.6.1The Maximum Order-Statistic CFAR Detectors
4.6.2OSGO,OSSO-CFAR Detector
4.6.3S-CFAR Detector
4.7Performance of Order-Statistic CFAR Detectors in
Homogeneous Background
4.8Performance of Order-Statistic CFAR Detectors in Multiple
Targets Situation
4.9Performance of Order-Statistic CFAR Detectors in Clutter Edge Situation
4.10Comparison and Summary
Reference
Chapter 5The Generalized Order-Statistic (GOS) CFAR Detectors with
Automatic Censoring Technique
5.1Introduction
5.2Description of Basic Models
5.2.1Model Description of OS-OS Type CFAR Detectors
5.2.2Model Description of OS-CA Type CFAR Detectors
5.2.3Model Description of TM-TM Type CFAR Detectors
5.3GOSCA,GOSGO,GOSSO-CFAR Detectors
5.3.1GOSCA-CFAR Detector
5.3.2GOSGO-CFAR Detector
5.3.3GOSSO-CFAR Detector
5.4MOSCA,OSCAGO,OSCASO-CFAR Detectors
5.4.1MOSCA-CFAR Detector
5.4.2OSCAGO-CFAR Detector
5.4.3OSCASO-CFAR Detector
5.5MTM,TMGO,TMSO-CFAR Detectors
5.5.1MTM-CFAR Detector
5.5.2TMGO-CFAR Detector
5.5.3TMSO-CFAR Detector
5.6Performance of GOS Type CFAR Detectors in Homogeneous
Background and Multiple Targets Situation
5.6.1Performance of GOS Type CFAR Detectors in
Homogeneous Background
5.6.2Performance of GOS Type CFAR Detectors in Multiple
Targets Situation
5.7Performance of GOS Type CFAR Detectors in Clutter Edge Situation
5.7.1Performance of GOSCA-CFAR Detectors in Clutter Edge Situation
5.7.2Performance of GOSGO,GOSSO-CFAR Detectors in
Clutter Edge Situation
5.7.3Performance of MOSCA-CFAR Detectors in Clutter Edge Situation
5.7.4Performance of OSCAGO,OSCASO-CFAR Detectors in
Clutter Edge Situation
5.7.5Performance of MTM,TMGO-CFAR Detectors in
Clutter Edge Situation
5.8Comparison and Summary
Reference
Chapter 6Adaptive CFAR Detectors
6.1Introduction
6.2CCA-CFAR Detector
6.3HCE-CFAR Detector
6.4E-CFAR Detector
6.4.1E-CFAR Detector Architecture
6.4.2Performance of E-CFAR Detector in Homogeneous
Background
6.4.3Performance of E-CFAR Detector in Multiple Targets
Situation
6.5OSTA-CFAR Detector
6.5.1Principle of OSTA-CFAR Detector
6.5.2Performance of OSTA-CFAR Detector in Clutter Edge
Situation
6.5.3Performance of OSTA-CFAR Detector in Multiple
Targets Situation
6.6VTM-CFAR Detector
6.6.1Principle of VTM-CFAR Detector
6.6.2Performance of VTM-CFAR Detector in Homogeneous
Background
6.6.3Performance of VTM-CFAR Detector in Multiple
Targets Situation
6.6.4Performance of VTM-CFAR Detector in Clutter
Edge Situation
6.6.5Choice of Parameters for VTM-CFAR Detector
6.7A Series of CFAR Detectors of Himonas
6.7.1GCMLD-CFAR Detector
6.7.2GO/SO-CFAR Detector
6.7.3ACMLD-CFAR Detector
6.7.4GTL-CMLD-CFAR Detector
6.7.5ACGO-CFAR Detector
6.8VI-CFAR Detector
6.8.1Application of VI-CFAR Detector in different Background
6.8.2Performance Analysis of VI-CFAR Detector
6.9Other Adaptive CFAR Detectors
6.9.1Double Adaptive CFAR Detector
6.9.2AC-CFAR Detector
6.9.3Improved CA-CFAR Detector
6.9.4Adaptive Length CFAR Detector
6.9.5ACCA-ODV-CFAR Detector
6.10Comparison and Summary
Reference
Chapter 7The CFAR Detectors in Weibull and Log-normal Background
7.1Introduction
7.2Log-t CFAR Detector
7.2.1Log-t CFAR Detector in Log-normal distribution
7.2.2Log-t CFAR Detector in Weibull distribution
7.3Order-Statistic CFAR detectors in Weibull Background
7.3.1Detection Performance of OS-CFAR Detector in
Weibull Background
7.3.2Detection Performance of OSGO-CFAR Detector in
Weibull Background
7.3.3Weber-Haykin CFAR scheme for Weibull Background
7.3.4Estimation of c Based on Expectation and Median of
Reference Samples
7.4MLH-CFAR Detector
7.4.1MLH-CFAR Detector for Weibull background with
Known Shape Parameter
7.4.2MLH-CFAR Detector for Weibull background with
Unknown Shape Parameter
7.4.3Detection Probability and CFAR Loss
7.5BLUE-CFAR Detector
7.5.1BLUE for Weibull background
7.5.2BLUE for Log-normal background
7.5.3Other Methods and Discussions
7.6Comparison and Summary
Reference
Chapter 8CFAR Processing in Compound Gaussian Clutter
8.1Introduction
8.2Compound Gaussian Distribution
8.2.1Compound Gaussian Distributed Clutter Model
8.2.2K Distributed Envelop Clutter Model
8.2.3Coherent and Correlated K Distributed Clutter Model
8.2.4Simulation of K Distributed Clutter
8.3Analysis of Detection Performance in K Distributed Sea Clutter
plus Thermal Noise
8.3.1Matching of K Distribution to Recorded Data
8.3.2Calculation of Target Detection Performance in Clutter plus Noise
8.3.3Analysis of Detection Performance in K Distributed Sea
Clutter plus Thermal Noise
8.4Performance Analysis of Classical CFAR Detectors in K Distributed Clutter
8.4.1CFAR Detection in K Distributed Clutter with Uncorrelated
Modulation Process
8.4.2CFAR Detection in K Distributed Clutter with Completely
Correlated Modulation Process
8.4.3CFAR Detection in K Distributed Clutter with Partially
Correlated Modulation Process
8.5Optimal CFAR Detectors in Compound Gaussian Clutter
8.5.1Optimal CFAR Detectors in Compound Gaussian Clutter Envelop
8.5.2Optimal Coherent CFAR Detectors in Compound Gaussian Clutter
8.6Summary
Reference
Chapter 9Nonparametric CFAR Detection
9.1Introduction
9.2Asymptotic Relative Efficiency for Nonparametric Detector
9.3One-Sample Nonparametric Detector
9.3.1Optimal Parametric Detector (in Gaussian Background)
9.3.2Sign Detector
9.3.3Wilcoxon Detector
9.4Two-Sample Nonparametric Detector
9.4.1Generalized Sign Detector
9.4.2Mann-Whitney Detector
9.4.3Savage Detector and Modified Savage Detector
9.4.4Rank Squared Detector and Modified Rank Squared Detector
9.4.5Asymptotic Relative Efficiency of Several Nonparametric Detectors
9.4.6Detection Performance of Nonparametric Detector with
Finite Samples
9.5Suboptimal Rank Nonparametric Detector
9.5.1Locally Optimal Rank Detector
9.5.2Suboptimal Rank Detector
9.5.3Performance Analysis of Suboptimal Rank Detector
9.6Comparison and Summary
Reference
Chapter 10Clutter Map CFAR Processing
10.1Introduction
10.2Nitzbergs Clutter Map Technique
10.2.1Principle of Nitzbergs Clutter Map
10.2.2Restriction on w by the ADT and False Alarm Rate of
Nitzbergs Clutter Map
10.3Clutter Map CA-CFAR Plane-Detection Technique
10.3.1Basic Model Description
10.3.2Performance Analysis in Homogeneous Background
10.3.3Performance Comparison between Plane-Detection
Technique and Point-Detection Technique
10.4Hybrid CM/L-CFAR Clutter Map Detection Technique
10.4.1Basic Model
10.4.2Performance in Homogeneous Background
10.4.3Performance in Multiple Targets Situation
10.5Comparison and Summary
Reference
Chapter 11CFAR Processing in Transform Domain
11.1Introduction
11.2DFT Processing of Signal and Noise
11.3CA-CFAR Detector in Frequency Domain
11.3.1CA-CFAR Detector in Frequency Domain
11.3.2MTI-FFT- Frequency CA-CFAR Scheme
11.4Two-Channel CFAR Detector in Frequency Domain
11.4.1System Configuration
11.4.2System Operating Performance
11.5OEP Detector in Frequency Domain
11.5.1System Architecture of OEP Detector
11.5.2Frequency Characteristic of ZP
11.5.3False Alarm Probability of OEP
11.5.4Analysis of OEP Detector
11.6CFAR Detector in Wavelet Domain
11.6.1CM-CFAR Detector Based on Discrete Wavelet Transform
11.6.2CM-CFAR Detector Based on Orthogonal Wavelet Transform
11.6.3CFAR Linear Detector Based on Orthogonal Wavelet Transform
11.7Methods for Improving MTD Radar Gain
11.7.1Method Based on FFT-DWT for Improving Radar Gain
11.7.2Method Based on WFFT-DWT for Improving Radar Gain
11.7.3Method Based on ZP-FFT for Improving Radar Gain
11.8Comparison and Summary
Reference
Chapter 12Detection of Range-Spread Target
12.1Introduction
12.2Signal Model of Range-Spread Target
12.2.1Rank One Signal Model
12.2.2Multi-Rank Subspace Signal Model
12.3Multi-Rank Subspace Detector of Range-Spread Target in Compound
Gaussian Clutter
12.3.1Problem Formulation
12.3.2Design of Generalized Matched Subspace Detector
12.3.3Calculation of Probability of False Alarm for Generalized
Matched Subspace Detector
12.3.4Adaptive Issues of Generalized Matched Subspace Detector
12.3.5Detection Performance Analysis
12.4Detector of Range-Spread Target in Compound Gaussian Clutter plus
Thermal Noise
12.4.1Problem Formulation
12.4.2Equivalent Processing of Thermal Noise
12.4.3Design of Range-Spread Target Detector in Compound
Gaussian Clutter plus Thermal Noise
12.4.4Detection Performance Analysis
12.5Detector of Range-Spread Target in SαS Clutter
12.5.1SαS Distribution and PFLOM Transform
12.5.2Problem Formulation
12.5.3Range-Spread Target Detector Based on PFLOM Transform
12.5.4Binary Integration Cauchy Detector in SαS Clutter
12.6Comparison and Summary
Reference
Chapter 13Distributed CFAR Processing with Multisensor
13.1Introduction
13.2Distributed CFAR Detection with Multisensor Based on Local
Binary Decision
13.2.1Distributed CA-CFAR Detection
13.2.2Distributed OS-CFAR Detection
13.2.3Examples for Distributed CFAR Detection
13.3Distributed CFAR Detection with Multisensor Based on Local
Test Statistic
13.3.1Distributed CFAR Detection Based on R Type Local
Test Statistic
13.3.2Distributed CFAR Detection Based on S and P Type
Local Test Statistic
13.4Summary
Reference
Chapter 14Other CFAR Processing Methods
14.1Introduction
14.2CFAR Processing of Array Signal
14.2.1Work of Reed,Mallett and Brennan
14.2.2Algorithm Based on Generalized Likelihood Ratio Test
14.2.3CFAR Detector with Adaptive Matched Filter
14.2.4Other Relative Research
14.3CFAR Processing for Correlated Signal
14.4Polarimetric CFAR Processing
14.5CFAR Processing Using Image Processing Technique
14.6CFAR Processing in α Stable Distribution
14.7CFAR Processing in Other Parts of Radar
14.8Summary
Reference
Chapter 15Review,Suggestion and Prospect
15.1Review
15.1.1Foundation of Theory System of CFAR Processing
15.1.2Performance Comparison of CFAR Schemes among
Different Fields
15.1.3Proposal of GOS Type CFAR Detectors with Automatic
Censoring Technique and Foundation of Uniform Model
15.1.4Expand CFAR Processing from Frequency Domain
to other Transform Domains
15.1.5Expand CFAR to Some New Fields including Distributed
Detection with Multisensor and Range-Spread Target Detection
15.2Problems and Suggestions
15.2.1Criterion for General Performance Evaluation
15.2.2More Quantitative Performance Analysis
15.2.3Performance Analysis Based on Background Model and
Complicated Background
15.2.4Choice of Reference Cells in Two-dimension Space of
Range and Azimuth
15.2.5In-depth Study on Target Characteristics
15.3Prospect for Research Direction
15.3.1CFAR Processing in Various Clutter Background and
Automatic Recognition of Clutter Background
15.3.2CFAR Processing Technique in Transform Domain
15.3.3CFAR Processing Based on the Combination of Image
Processing Technique and Vision Processing Technique
15.3.4CFAR Processing Technique Based on the Combination
of Detection and Tracking
15.3.5Combination of Intelligent Signal Processing Technique
and CFAR Processing
15.3.6CFAR Processing of Phased-Array Radar
15.3.7Realization of Radar Automatic Target Detection CFAR
Processing Techniques
Reference
English Abbreviation Glossary