目录
PART ONE
SOLIDSTATE ELECTRONICS AND DEVICES
CHAPTER 1
INTRODUCTION TO ELECTRONICS
3
1.1A Brief History of Electronics: From Vacuum
Tubes to GigaScale Integration6
1.2Classification of Electronic Signals10
1.2.1Digital Signals10
1.2.2Analog Signals11
1.2.3A/D and D/A Converters—Bridging the
Analog and Digital Domains12
1.3Notational Conventions14
1.4ProblemSolving Approach15
1.5Important Concepts from Circuit Theory17
1.5.1Voltage and Current Division17
1.5.2Thévenin and Norton Circuit
Representations18
1.6Frequency Spectrum of Electronic Signals23
1.7Amplifiers24
1.7.1Ideal Operational Amplifiers25
1.7.2Amplifier Frequency Response28
1.8Element Variations in Circuit Design28
1.8.1Mathematical Modeling of Tolerances29
1.8.2WorstCase Analysis29
1.8.3Monte Carlo Analysis31
1.8.4Temperature Coefficients34
1.9Numeric Precision36
Summary36
Key Terms37
References38
Additional Reading38
Problems39
CHAPTER 2
SOLIDSTATE ELECTRONICS46
2.1SolidState Electronic Materials50
2.2Covalent Bond Model51
2.3Drift Currents and Mobility in Semiconductors54
2.3.1Drift Currents54
2.3.2Mobility55
2.3.3Velocity Saturation55
2.4Resistivity of Intrinsic Silicon56
2.5Impurities in Semiconductors57
2.5.1Donor Impurities in Silicon58
2.5.2Acceptor Impurities in Silicon58
2.6Electron and Hole Concentrations in Doped
Semiconductors58
2.6.1nType Material(ND >NA)59
2.6.2pType Material(NA>ND )60
2.7Mobility and Resistivity in Doped Semiconductors61
2.8Diffusion Currents65
2.9Total Current66
2.10Energy Band Model67
2.10.1Electron—Hole Pair Generation in an
Intrinsic Semiconductor67
2.10.2Energy Band Model for a Doped
Semiconductor68
2.10.3Compensated Semiconductors68
2.11Overview of Integrated Circuit Fabrication70
Summary73
Key Terms74
References75
Additional Reading75
Problems75
CHAPTER 3
SOLIDSTATE DIODES AND DIODE CIRCUITS81
3.1The pn Junction Diode84
3.1.1pn Junction Electrostatics84
3.1.2Internal Diode Currents88
3.2The iv Characteristics of the Diode89
3.3The Diode Equation: A Mathematical Model for
the Diode91
3.4Diode Characteristics under Reverse, Zero,
and Forward Bias94
3.4.1Reverse Bias94
3.4.2Zero Bias94
3.4.3Forward Bias95
3.5Diode Temperature Coefficient97
3.6Diodes under Reverse Bias97
3.6.1Saturation Current in Real Diodes98
3.6.2Reverse Breakdown100
3.6.3Diode Model for the Breakdown Region101
3.7pn Junction Capacitance101
3.7.1Reverse Bias101
3.7.2Forward Bias102
3.8Schottky Barrier Diode104
3.9Diode SPICE Model and Layout104
3.9.1Diode Layout105
3.10Diode Circuit Analysis106
3.10.1LoadLine Analysis107
3.10.2Analysis Using the Mathematical
Model for the Diode108
3.10.3The Ideal Diode Model112
3.10.4Constant Voltage Drop Model114
3.10.5Model Comparison and Discussion115
3.11MultipleDiode Circuits116
3.12Analysis of Diodes Operating in the Breakdown
Region119
3.12.1LoadLine Analysis119
3.12.2Analysis with the Piecewise
Linear Model119
3.12.3Voltage Regulation120
3.12.4Analysis Including Zener Resistance121
3.12.5Line and Load Regulation122
3.13HalfWave Rectifier Circuits123
3.13.1HalfWave Rectifier with Resistor Load123
3.13.2Rectifier Filter Capacitor124
3.13.3HalfWave Rectifier with RC Load125
3.13.4Ripple Voltage and Conduction Interval126
3.13.5Diode Current128
3.13.6Surge Current130
3.13.7PeakInverseVoltage (PIV) Rating130
3.13.8Diode Power Dissipation130
3.13.9HalfWave Rectifier with Negative
Output Voltage131
3.14FullWave Rectifier Circuits133
3.14.1FullWave Rectifier with Negative
Output Voltage134
3.15FullWave Bridge Rectification134
3.16Rectifier Comparison and Design Tradeoffs135
3.17Dynamic Switching Behavior of the Diode139
3.18Photo Diodes, Solar Cells, and LightEmitting
Diodes140
3.18.1Photo Diodes and Photodetectors140
3.18.2Power Generation from Solar Cells141
3.18.3LightEmitting Diodes (LEDs)142
Summary143
Key Terms144
Reference145
Additional Reading145
Problems145
CHAPTER 4
BIPOLAR JUNCTION TRANSISTORS158
4.1Physical Structure of the Bipolar Transistor161
4.2The Transport Model for the npn Transistor162
4.2.1Forward Characteristics163
4.2.2Reverse Characteristics165
4.2.3The Complete Transport Model Equations
for Arbitrary Bias Conditions166
4.3The pnp Transistor168
4.4Equivalent Circuit Representations for the
Transport Models170
4.5The iv Characteristics of the Bipolar Transistor171
4.5.1Output Characteristics171
4.5.2Transfer Characteristics172
4.6The Operating Regions of the Bipolar Transistor173
4.7Transport Model Simplifications174
4.7.1Simplified Model for the Cutoff Region174
4.7.2Model Simplifications for the
ForwardActive Region176
4.7.3Diodes in Bipolar Integrated Circuits182
4.7.4Simplified Model for the ReverseActive
Region183
4.7.5Modeling Operation in the Saturation
Region186
4.8Nonideal Behavior of the Bipolar Transistor189
4.8.1Junction Breakdown Voltages189
4.8.2MinorityCarrier Transport in the Base
Region189
4.8.3Base Transit Time190
4.8.4Diffusion Capacitance192
4.8.5Frequency Dependence of the
CommonEmitter Current Gain193
4.8.6The Early Effect and Early Voltage193
4.8.7Modeling the Early Effect194
4.8.8Origin of the Early Effect194
4.9Transconductance195
4.10Bipolar Technology and SPICE Model196
4.10.1Qualitative Description196
4.10.2SPICE Model Equations197
4.10.3HighPerformance Bipolar Transistors199
4.11Practical Bias Circuits for the BJT199
4.11.1FourResistor Bias Network201
4.11.2Design Objectives for the FourResistor
Bias Network203
4.11.3Iterative Analysis of the FourResistor
Bias Circuit207
4.12Tolerances in Bias Circuits208
4.12.1WorstCase Analysis208
4.12.2Monte Carlo Analysis210
Summary213
Key Terms215
References216
Additional Readings216
Problems216
CHAPTER 5
FIELDEFFECT TRANSISTORS228
5.1Characteristics of the MOS Capacitor231
5.1.1Accumulation Region232
5.1.2Depletion Region233
5.1.3Inversion Region233
5.2The NMOS Transistor233
5.2.1Qualitative iv Behavior of the NMOS
Transistor234
5.2.2Triode Region Characteristics of the NMOS
Transistor235
5.2.3On Resistance238
5.2.4Transconductance239
5.2.5Saturation of the iv Characteristics240
5.2.6Mathematical Model in the Saturation
(PinchOff)Region241
5.2.7Transconductance in Saturation242
5.2.8ChannelLength Modulation242
5.2.9Transfer Characteristics and
DepletionMode MOSFETs243
5.2.10Body Effect or Substrate Sensitivity245
5.3PMOS Transistors246
5.4MOSFET Circuit Symbols248
5.5MOS Transistor Symmetry249
5.5.1The OneTransistor Dram Cell 249
5.5.2Data Storage in the 1T Cell 250
5.5.3Reading Data from the 1T Cell 251
5.6CMOS Technology 254
5.6.1CMOS Voltage Transfer Characteristics 256
5.7CMOS Latchup258
5.8Capacitances in MOS Transistors260
5.8.1NMOS Transistor Capacitances in the
Triode Region260
5.8.2Capacitances in the Saturation Region263
5.8.3Capacitances in Cutoff263
5.9MOSFET Modeling in SPICE263
5.10MOS Transistor Scaling265
5.10.1Drain Current266
5.10.2Gate Capacitance266
5.10.3Circuit and Power Densities266
5.10.4PowerDelay Product267
5.10.5Cutoff Frequency267
5.10.6High Field Limitations268
5.10.7The Unified MOS Transistor Model
Including High Field Limitations269
5.10.8Subthreshold Conduction270
5.11All Region Modeling271
5.11.1Interpolation Model271
5.11.2Interpolation Model in the Saturation
Region271
5.11.3Transconductance Efficiency272
5.12MOS Transistor Fabrication and Layout
Design Rules274
5.12.1Minimum Feature Size and Alignment
Tolerance274
5.12.2MOS Transistor Layout275
5.12.3CMOS Inverter Layout277
5.13Advanced CMOS Technologies278
5.14Biasing the NMOS FieldEffect Transistor281
5.14.1Why Do We Need Bias?281
5.14.2FourResistor Biasing283
5.14.3Constant GateSource Voltage Bias287
5.14.4Graphical Analysis for the QPoint287
5.14.5Analysis Including Body Effect288
5.14.6Analysis Using the Unified Model290
5.14.7NMOS Circuit Analysis Comparisons292
5.14.8TwoResistor Bias292
5.15Biasing the PMOS FieldEffect Transistor292
5.16Biasing the CMOS Inverter as an Amplifier 295
5.17The CMOS Transmission Gate296
5.18The Junction FieldEffect Transistor (JFET)298
5.18.1The JFET with Bias Applied299
5.18.2JFET Channel with DrainSource Bias299
5.18.3 nChannel JFET iv Characteristics301
5.18.4The pChannel JFET302
5.18.5Circuit Symbols and JFET Model
Summary302
5.18.6JFET Capacitances303
5.19JFET Modeling in SPICE304
5.20Biasing the JFET and DepletionMode MOSFET305
Summary307
Key Terms309
References310
Additional Readings311
Problems312
PART TWO
ANALOG ELECTRONICS
CHAPTER 6
INTRODUCTION TO AMPLIFIERS331
6.1An Example of an Analog Electronic System334
6.2Amplification335
6.2.1Voltage Gain336
6.2.2Current Gain337
6.2.3Power Gain337
6.2.4Location of the Amplifier337
6.2.5The Decibel Scale338
6.3TwoPort Models for Amplifiers341
6.3.1The gParameters341
6.4Mismatched Source and Load Resistances345
6.5The Differential Amplifier348
6.5.1Differential Amplifier Voltage Transfer
Characteristic349
6.5.2Voltage Gain349
6.6Distortion in Amplifiers351
6.7Differential Amplifier Model352
6.8Amplifier Frequency Response354
6.8.1Bode Plots354
6.8.2The LowPass Amplifier355
6.8.3The HighPass Amplifier358
6.8.4BandPass Amplifiers361
Summary364
Key Terms365
References365
Additional Reading365
Problems365
CHAPTER 7
THE TRANSISTOR AS AN AMPLIFIER374
7.1The Transistor as an Amplifier377
7.1.1The BJT Amplifier378
7.1.2The MOSFET Amplifier379
7.2Coupling and Bypass Capacitors380
7.3Circuit Analysis Using dc and ac Equivalent
Circuits382
7.3.1Menu for dc and ac Analysis382
7.4Introduction to SmallSignal Modeling386
7.4.1Graphical Interpretation of the Small
Signal Behavior of the Diode386
7.4.2SmallSignal Modeling of the Diode387
7.5SmallSignal Models for Bipolar Junction
Transistors389
7.5.1The HybridPi Model391
7.5.2Graphical Interpretation of the
Transconductance392
7.5.3SmallSignal Current Gain392
7.5.4The Intrinsic Voltage Gain of the BJT393
7.5.5Equivalent Forms of the SmallSignal
Model394
7.5.6Simplified HybridPi Model395
7.5.7Definition of a Small Signal for the
Bipolar Transistor395
7.5.8SmallSignal Model for the pnp
Transistor397
7.5.9ac Analysis versus Transient Analysis
in SPICE398
7.6The CommonEmitter (CE) Amplifier398
7.6.1Terminal Voltage Gain398
7.6.2Input Resistance400
7.6.3Signal Source Voltage Gain400
7.7Important Limits and Model Simplifications400
7.7.1A Design Guide for the CommonEmitter
Amplifier401
7.7.2Upper Bound on the CommonEmitter
Gain402
7.7.3SmallSignal Limit for the Common
Emitter Amplifier402
7.8SmallSignal Models for FieldEffect Transistors405
7.8.1SmallSignal Model for the MOSFET405
7.8.2Intrinsic Voltage Gain of the MOSFET407
7.8.3Definition of SmallSignal Operation for
the MOSFET408
7.8.4Body Effect in the FourTerminal
MOSFET409
7.8.5SmallSignal Model for the PMOS
Transistor410
7.8.6SmallSignal Model for MOS
Transistors in Weak Inversion411
7.8.7 SmallSignal Model for the Junction
FieldEffect Transistor411
7.9Summary and Comparison of the SmallSignal
Models of the BJT and FET412
7.10The CommonSource(CS) Amplifier415
7.10.1CommonSource Terminal Voltage
Gain416
7.10.2Signal Source Voltage Gain for the
CommonSource Amplifier416
7.10.3A Design Guide for the Common
Source Amplifier417
7.10.4SmallSignal Limit for the Common
Source Amplifier418
7.10.5Input Resistances of the CommonEmitter
and CommonSource Amplifiers420
7.10.6CommonEmitter and CommonSource
Output Resistances422
7.10.7Comparison of the Three Amplifier
Examples428
7.11CommonEmitter and CommonSource
Amplifier Summary429
7.11.1Guidelines for Neglecting the Transistor
Output Resistance429
7.12Amplifier Power and Signal Range430
7.12.1Power Dissipation430
7.12.2Signal Range431
Summary434
Key Terms435
Reference435
Problems436
CHAPTER 8
TRANSISTOR AMPLIFIER BUILDING
BLOCKS449
8.1Amplifier Classification452
8.1.1Signal Injection and Extraction—the BJT452
8.1.2Signal Injection and Extraction—the FET453
8.1.3CommonEmitter (CE) and Common
Source (CS)Amplifiers454
8.1.4CommonCollector (CC) and Common
Drain (CD)Topologies455
8.1.5CommonBase (CB) and Common
Gate (CG)Amplifiers457
8.1.6SmallSignal Model Review458
8.2Inverting Amplifiers—CommonEmitter and
CommonSource Circuits458
8.2.1The CommonEmitter (CE)Amplifier458
8.2.2CommonEmitter Example Comparison470
8.2.3The CommonSource Amplifier471
8.2.4SmallSignal Limit for the Common
Source Amplifier474
8.2.5CommonEmitter and CommonSource
Amplifier Characteristics478
8.2.6CE/CS Amplifier Summary479
8.2.7Equivalent Transistor Representation of
the Generalized CE/CS Transistor479
8.3Follower Circuits—CommonCollector and
CommonDrain Amplifiers480
8.3.1Terminal Voltage Gain482
8.3.2Input Resistance483
8.3.3Signal Source Voltage Gain483
8.3.4Follower Signal Range484
8.3.5Follower Output Resistance484
8.3.6Current Gain486
8.3.7CC/CD Amplifier Summary486
8.4Noninverting Amplifiers—CommonBase and
CommonGate Circuits490
8.4.1Terminal Voltage Gain and Input
Resistance492
8.4.2Signal Source Voltage Gain493
8.4.3Input Signal Range494
8.4.4Resistance at the Collector and Drain
Terminals494
8.4.5Current Gain495
8.4.6Overall Input and Output Resistances
for the Noninverting Amplifiers495
8.4.7CB/CG Amplifier Summary499
8.5Amplifier Prototype Review and
Comparison500
8.5.1The BJT Amplifiers500
8.5.2The FET Amplifiers502
8.6CommonSource Amplifiers Using MOS
Transistor Loads505
8.6.1Voltage Gain Estimate505
8.6.2Detailed Analysis506
8.6.3Alternative Loads507
8.6.4Input and Output Resistances508
8.7Coupling and Bypass Capacitor Design511
8.7.1CommonEmitter and Common
Source Amplifiers511
8.7.2CommonCollector and Common
Drain Amplifiers515
8.7.3CommonBase and CommonGate
Amplifiers518
8.7.4Setting Lower Cutoff Frequency fL521
8.8Amplifier Design Examples522
8.8.1Monte Carlo Evaluation of the Common
Base Amplifier Design531
8.9Multistage acCoupled Amplifiers536
8.9.1A ThreeStage acCoupled Amplifier537
8.9.2Voltage Gain539
8.9.3Input Resistance540
8.9.4Signal Source Voltage Gain540
8.9.5Output Resistance541
8.9.6Current and Power Gain542
8.9.7Input Signal Range542
8.9.8Estimating the Lower Cutoff Frequency
of the Multistage Amplifier546
8.10Introduction to dcCoupled Amplifiers 546
8.10.1A dcCoupled ThreeStage Amplifier 548
8.10.2Two Transistor dcCoupled Amplifiers549
Summary551
Key Terms553
Additional Reading553
Problems553
CHAPTER 9
AMPLIFIER FREQUENCY RESPONSE571
9.1Amplifier Frequency Response574
9.1.1LowFrequency Response575
9.1.2Estimating ωL in the Absence of a
Dominant Pole575
9.1.3HighFrequency Response578
9.1.4Estimating ωH in the Absence of a
Dominant Pole578
9.2Direct Determination of the LowFrequency Poles
and Zeros—the CommonSource Amplifier579
9.3Estimation of ωL Using the ShortCircuit Time
Constant Method584
9.3.1Estimate of ωL for the Common
Emitter Amplifier585
9.3.2Estimate of ωL for the CommonSource
Amplifier589
9.3.3Estimate of ωL for the CommonBase
Amplifier590
9.3.4Estimate of ωL for the CommonGate
Amplifier591
9.3.5Estimate of ωL for the Common
Collector Amplifier592
9.3.6Estimate of ωL for the CommonDrain
Amplifier592
9.4Transistor Models at High Frequencies593
9.4.1FrequencyDependent HybridPi Model
for the Bipolar Transistor593
9.4.2Modeling Cπ and Cμ in SPICE594
9.4.3UnityGain Frequency fT594
9.4.4HighFrequency Model for the FET597
9.4.5Modeling CGS and CGD in SPICE598
9.4.6Channel Length Dependence of fT598
9.4.7Limitations of the HighFrequency
Models600
9.5Base and Gate Resistances in the SmallSignal
Models600
9.5.1Effect of Base and Gate Resistances
on Midband Amplifiers601
9.6HighFrequency CommonEmitter and Common
Source Amplifier Analysis602
9.6.1The Miller Effect604
9.6.2CommonEmitter and CommonSource
Amplifier HighFrequency Response606
9.6.3Direct Analysis of the Common
Emitter Transfer Characteristic608
9.6.4Poles of the CommonEmitter Amplifier609
9.6.5Dominant Pole for the CommonSource
Amplifier612
9.6.6Estimation of ωH Using the Open
Circuit TimeConstant Method614
9.6.7CommonSource Amplifier with Source
Degeneration Resistance615
9.6.8Poles of the CommonEmitter with
Emitter Degeneration Resistance617
9.7CommonBase and CommonGate Amplifier
HighFrequency Response620
9.8CommonCollector and CommonDrain
Amplifier HighFrequency Response622
9.9SingleStage Amplifier HighFrequency
Response Summary625
9.9.1Amplifier GainBandwidth (GBW)
Limitations625
9.10Frequency Response of Multistage Amplifiers626
9.10.1Differential Amplifier626
9.10.2The CommonCollector/Common
Base Cascade628
9.10.3HighFrequency Response of the
Cascode Amplifier629
9.10.4Cutoff Frequency for the Current Mirror630
9.10.5ThreeStage Amplifier Example631
9.11Introduction to Radio Frequency Circuits639
9.11.1Radio Frequency Amplifiers640
9.11.2The ShuntPeaked Amplifier640
9.11.3SingleTuned Amplifier642
9.11.4Use of a Tapped Inductor—the Auto
Transformer644
9.11.5Multiple Tuned Circuits—Synchronous
and Stagger Tuning646
9.11.6CommonSource Amplifier with
Inductive Degeneration647
9.12Mixers and Balanced Modulators651
9.12.1Introduction to Mixer Operation651
9.12.2A SingleBalanced Mixer652
9.12.3The Differential Pair as a Single
Balanced Mixer653
9.12.4A DoubleBalanced Mixer655
9.12.5The Jones Mixer—a Double
Balanced Mixer/Modulator657
Summary661
Key Terms662
References662
Problems663
PART THREE
OPERATIONAL AMPLIFIERS AND FEEDBACK
CHAPTER 10
IDEAL OPERATIONAL AMPLIFIERS679
10.1Ideal Differential and Operational Amplifiers681
10.1.1Assumptions for Ideal Operational
Amplifier Analysis682
10.2Analysis of Circuits Containing Ideal
Operational Amplifiers682
10.2.1The Inverting Amplifier683
10.2.2The Transresistance Amplifier—a
CurrenttoVoltage Converter686
10.2.3The Noninverting Amplifier688
10.2.4The UnityGain Buffer, or Voltage
Follower690
10.2.5The Summing Amplifier693
10.2.6The Difference Amplifier695
10.3Frequency Dependent Feedback697
10.3.1An Active LowPass Filter698
10.3.2An Active HighPass Filter701
10.3.3The Integrator702
10.3.4The Differentiator706
Summary706
Key Terms707
References708
Additional Reading708
Problems708
CHAPTER 11
NONIDEAL OPERATIONAL AMPLIFIERS
AND FEEDBACK AMPLIFIER STABILITY715
11.1Classic Feedback Systems718
11.1.1ClosedLoop Gain Analysis719
11.1.2Gain Error719
11.2Analysis of Circuits Containing Nonideal
Operational Amplifiers720
11.2.1Finite OpenLoop Gain720
11.2.2Nonzero Output Resistance723
11.2.3Finite Input Resistance727
11.2.4Summary of Nonideal Inverting and
Noninverting Amplifiers731
11.3Series and Shunt Feedback Circuits732
11.3.1Feedback Amplifier Categories732
11.3.2Voltage Amplifiers—SeriesShunt
Feedback733
11.3.3Transimpedance Amplifiers—
ShuntShunt Feedback733
11.3.4Current Amplifiers—ShuntSeries
Feedback733
11.3.5Transconductance Amplifiers—
SeriesSeries Feedback733
11.4Unified Approach to Feedback Amplifier Gain
Calculation733
11.4.1ClosedLoop Gain Analysis734
11.4.2Resistance Calculations Using
Blackman’s Theorem734
11.5SeriesShunt Feedback—Voltage Amplifiers734
11.5.1ClosedLoop Gain Calculation735
11.5.2Input Resistance Calculations735
11.5.3Output Resistance Calculations736
11.5.4SeriesShunt Feedback Amplifier
Summary737
11.6ShuntShunt Feedback—Transresistance
Amplifiers741
11.6.1ClosedLoop Gain Calculation741
11.6.2Input Resistance Calculations742
11.6.3Output Resistance Calculations742
11.6.4ShuntShunt Feedback Amplifier
Summary743
11.7SeriesSeries Feedback—Transconductance
Amplifiers746
11.7.1ClosedLoop Gain Calculation747
11.7.2Input Resistance Calculation747
11.7.3Output Resistance Calculation748
11.7.4SeriesSeries Feedback Amplifier
Summary748
11.8ShuntSeries Feedback—Current Amplifiers750
11.8.1ClosedLoop Gain Calculation751
11.8.2Input Resistance Calculation751
11.8.3Output Resistance Calculation752
11.8.4ShuntSeries Feedback Amplifier
Summary752
11.9Finding the Loop Gain Using Successive
Voltage and Current Injection755
11.9.1Simplifications758
11.10Distortion Reduction Through the Use of
Feedback758
11.11DC Error Sources and Output Range
Limitations759
11.11.1InputOffset Voltage759
11.11.2OffsetVoltage Adjustment761
11.11.3InputBias and Offset Currents762
11.11.4Output Voltage and Current Limits764
11.12CommonMode Rejection and Input
Resistance767
11.12.1Finite CommonMode Rejection
Ratio767
11.12.2Why Is CMRR Important?768
11.12.3VoltageFollower Gain Error due
to CMRR771
11.12.4CommonMode Input Resistance774
11.12.5An Alternate Interpretation of CMRR775
11.12.6Power Supply Rejection Ratio775
11.13Frequency Response and Bandwidth of
Operational Amplifiers777
11.13.1Frequency Response of the
Noninverting Amplifier779
11.13.2Inverting Amplifier Frequency
Response782
11.13.3Using Feedback to Control
Frequency Response784
11.13.4LargeSignal Limitations—Slew
Rate and FullPower Bandwidth786
11.13.5Macro Model for Operational Amplifier Frequency Response787
11.13.6Complete Op Amp Macro Models in
SPICE788
11.13.7Examples of Commercial General
Purpose Operational Amplifiers788
11.14Stability of Feedback Amplifiers789
11.14.1The Nyquist Plot789
11.14.2FirstOrder Systems790
11.14.3SecondOrder Systems and Phase
Margin791
11.14.4Step Response and Phase Margin792
11.14.5ThirdOrder Systems and Gain
Margin795
11.14.6Determining Stability from the
Bode Plot796
Summary800
Key Terms802
References802
Problems803
CHAPTER 12
OPERATIONAL AMPLIFIER APPLICATIONS817
12.1Cascaded Amplifiers820
12.1.1TwoPort Representations820
12.1.2Amplifier Terminology Review822
12.1.3Frequency Response of Cascaded
Amplifiers825
12.2The Instrumentation Amplifier833
12.3Active Filters836
12.3.1LowPass Filter836
12.3.2A HighPass Filter with Gain840
12.3.3BandPass Filter842
12.3.4Sensitivity844
12.3.5Magnitude and Frequency Scaling845
12.4SwitchedCapacitor Circuits846
12.4.1A SwitchedCapacitor Integrator846
12.4.2Noninverting SC Integrator848
12.4.3SwitchedCapacitor Filters850
12.5DigitaltoAnalog Conversion853
12.5.1D/A Converter Fundamentals853
12.5.2D/A Converter Errors854
12.5.3DigitaltoAnalog Converter Circuits856
12.6AnalogtoDigital Conversion860
12.6.1A/D Converter Fundamentals861
12.6.2AnalogtoDigital Converter Errors862
12.6.3Basic A/D Conversion Techniques863
12.7Oscillators874
12.7.1The Barkhausen Criteria for
Oscillation874
12.7.2Oscillators Employing Frequency
Selective RC Networks875
12.8Nonlinear Circuit Applications879
12.8.1A Precision HalfWave Rectifier879
12.8.2Nonsaturating PrecisionRectifier
Circuit880
12.9Circuits Using Positive Feedback882
12.9.1The Comparator and Schmitt Trigger882
12.9.2The Astable Multivibrator884
12.9.3The Monostable Multivibrator or
One Shot885
Summary889
Key Terms891
Additional Reading892
Problems892
CHAPTER 13
DIFFERENTIAL AMPLIFIERS AND
OPERATIONAL AMPLIFIER DESIGN906
13.1Differential Amplifiers909
13.1.1Bipolar and MOS Differential
Amplifiers909
13.1.2dc Analysis of the Bipolar Differential
Amplifier910
13.1.3Transfer Characteristic for the Bipolar
Differential Amplifier912
13.1.4ac Analysis of the Bipolar Differential
Amplifier913
13.1.5DifferentialMode Gain and Input and
Output Resistances914
13.1.6CommonMode Gain and Input
Resistance916
13.1.7CommonMode Rejection
Ratio (CMRR)918
13.1.8Analysis Using Differential—and
CommonMode HalfCircuits919
13.1.9Biasing with Electronic Current
Sources922
13.1.10Modeling the Electronic Current
Source in SPICE923
13.1.11dc Analysis of the MOSFET
Differential Amplifier923
13.1.12DifferentialMode Input Signals926
13.1.13SmallSignal Transfer Characteristic
for the MOS Differential Amplifier927
13.1.14CommonMode Input Signals927
13.1.15Model for Differential Pairs928
13.2Evolution to Basic Operational Amplifiers932
13.2.1A TwoStage Prototype for an
Operational Amplifier933
13.2.2Improving the Op Amp Voltage Gain938
13.2.3Darlington Pairs939
13.2.4Output Resistance Reduction940
13.2.5A CMOS Operational Amplifier
Prototype944
13.2.6BiCMOS Amplifiers946
13.2.7All Transistor Implementations946
13.3Output Stages948
13.3.1The Source Follower—a ClassA
Output Stage948
13.3.2Efficiency of ClassA Amplifiers949
13.3.3ClassB PushPull Output Stage950
13.3.4ClassAB Amplifiers952
13.3.5ClassAB Output Stages for
Operational Amplifiers953
13.3.6ShortCircuit Protection953
13.3.7Transformer Coupling955
13.4Electronic Current Sources958
13.4.1SingleTransistor Current Sources959
13.4.2Figure of Merit for Current Sources959
13.4.3Higher Output Resistance Sources960
13.4.4Current Source Design Examples961
Summary969
Key Terms970
References970
Additional Reading971
Problems971
CHAPTER 14
ANALOG INTEGRATED CIRCUIT DESIGN
TECHNIQUES989
14.1Circuit Element Matching992
14.2Current Mirrors993
14.2.1dc Analysis of the MOS Transistor
Current Mirror994
14.2.2Changing the MOS Mirror Ratio996
14.2.3dc Analysis of the Bipolar Transistor
Current Mirror997
14.2.4Altering the BJT Current Mirror Ratio999
14.2.5Multiple Current Sources1000
14.2.6Buffered Current Mirror1001
14.2.7Output Resistance of the Current
Mirrors1002
14.2.8TwoPort Model for the Current
Mirror1003
14.2.9The Widlar Current Source1005
14.2.10The MOS Version of the Widlar
Source1008
14.2.11MOS Widlar Source in Weak
Inversion 1008
14.3HighOutputResistance Current Mirrors1009
14.3.1The Wilson Current Sources1010
14.3.2Output Resistance of the Wilson
Source1011
14.3.3Cascode Current Sources1012
14.3.4Output Resistance of the Cascode
Sources1013
14.3.5Regulated Cascode Current Source1014
14.3.6Current Mirror Summary1015
14.4Reference Current Generation1018
14.5SupplyIndependent Biasing1019
14.5.1A VBE Based Reference1019
14.5.2The Widlar Source1019
14.5.3PowerSupplyIndependent Bias
Cell1020
14.5.4A SupplyIndependent MOS
Reference Cell1021
14.6The Bandgap Reference1023
14.7The Current Mirror as an Active Load1027
14.7.1CMOS Differential Amplifier with
Active Load1027
14.7.2Bipolar Differential Amplifier with
Active Load1034
14.8Active Loads in Operational Amplifiers1038
14.8.1CMOS OpAmp Voltage Gain1038
14.8.2dc Design Considerations1039
14.8.3Bipolar Operational Amplifiers1041
14.8.4Input Stage Breakdown1042
14.9The μA741 Operational Amplifier1043
14.9.1Overall Circuit Operation1043
14.9.2Bias Circuitry1044
14.9.3dc Analysis of the 741 Input Stage1045
14.9.4ac Analysis of the 741 Input Stage1048
14.9.5Voltage Gain of the Complete
Amplifier1049
14.9.6The 741 Output Stage1053
14.9.7Output Resistance1055
14.9.8ShortCircuit Protection1055
14.9.9Summary of the μA741 Operational
Amplifier Characteristics1055
14.10The Gilbert Analog Multiplier1056
Summary1058
Key Terms1059
References1060
Additional Readings1060
Problems1060
CHAPTER 15
TRANSISTOR FEEDBACK AMPLIFIERS
AND OSCILLATORS1077
15.1Basic Feedback System Review1080
15.1.1ClosedLoop Gain1080
15.1.2ClosedLoop Impedances1081
15.1.3Feedback Effects1081
15.2Feedback Amplifier Analysis at Midband1083
15.2.1ClosedLoop Gain1083
15.2.2Input Resistance1084
15.2.3Output Resistance1084
15.2.4Offset Voltage Calculation1085
15.3Feedback Amplifier Circuit Examples1086
15.3.1SeriesShunt Feedback—
Voltage Amplifiers1086
15.3.2Differential Input SeriesShunt
Voltage Amplifier1091
15.3.3ShuntShunt Feedback—
Transresistance Amplifiers1094
15.3.4SeriesSeries Feedback—
Transconductance Amplifiers1100
15.3.5ShuntSeries Feedback—
Current Amplifiers1103
15.4Review of Feedback Amplifier Stability1106
15.4.1ClosedLoop Response of the
Uncompensated Amplifier1107
15.4.2Phase Margin1108
15.4.3HigherOrder Effects1112
15.4.4Response of the Compensated
Amplifier1113
15.4.5SmallSignal Limitations1115
15.5SinglePole Operational Amplifier
Compensation1115
15.5.1ThreeStage OpAmp Analysis1116
15.5.2Transmission Zeros in FET Op Amps1118
15.5.3Bipolar Amplifier Compensation1119
15.5.4Slew Rate of the Operational
Amplifier1120
15.5.5Relationships between Slew Rate
and GainBandwidth Product1121
15.6HighFrequency Oscillators1130
15.6.1The Colpitts Oscillator1131
15.6.2The Hartley Oscillator1132
15.6.3Amplitude Stabilization in LC
Oscillators1133
15.6.4Negative Resistance in Oscillators1133
15.6.5Negative Gm Oscillator1134
15.6.6Crystal Oscillators1136
15.6.7Ring Oscillators 1139
15.6.8Positive Feedback and Latchup 1140
Summary1143
Key Terms1145
Additional Readings1145
Problems1145
APPENDICES1159
AStandard Discrete Component Values1159
BSolidState Device Models and
SPICE Simulation Parameters1162
CTwoPort Review (Section 6.3)1167
DPhysical Constants and Transistor
Model Summary1170
第一部分
固态电子学与器件
第1章
电子学简介
1.1电子学发展简史: 从真空管到吉规模
集成电路
1.2电信号的分类
1.2.1数字信号
1.2.2模拟信号
1.2.3A/D和D/A转换器——模拟与数字
信号的桥梁
1.3符号约定
1.4问题求解的方法
1.5电路理论的主要概念
1.5.1分压和分流
1.5.2戴维南定理和诺顿
定理
1.6电信号的频谱
1.7放大器
1.7.1理想运算放大器
1.7.2放大器频率响应
1.8电路设计中元件参数的变化
1.8.1容差的数学模型
1.8.2最差情况分析
1.8.3蒙特卡洛分析
1.8.4温度系数
1.9数值精度
小结
关键词
参考文献
补充阅读
习题
第2章
固态电子学
2.1固态电子材料
2.2共价键模型
2.3半导体中的漂移电流和迁移率
2.3.1漂移电流
2.3.2迁移率
2.3.3速度饱和
2.4本征硅的电阻率
2.5半导体中的杂质
2.5.1硅中的施主杂质
2.5.2硅中的受主杂质
2.6掺杂半导体中的电子和
空穴浓度
2.6.1n型材料(ND>NA)
2.6.2p型材料(NA>ND)
2.7掺杂半导体中的迁移率和电阻率
2.8扩散电流
2.9总电流
2.10能带模型
2.10.1本征半导体中电子空穴对
的产生
2.10.2掺杂半导体的能带
模型
2.10.3补偿半导体
2.11集成电路制造综述
小结
关键词
参考文献
补充阅读
习题
第3章
固态二极管和二极管电路
3.1pn结二极管
3.1.1pn结静电学
3.1.2二极管内部电流
3.2二极管的iv特性
3.3二极管方程: 二极管的数学模型
3.4二极管特性之反偏、零偏
和正偏
3.4.1反偏
3.4.2零偏
3.4.3正偏
3.5二极管的温度系数
3.6反偏下的二极管
3.6.1实际二极管的饱和电流
3.6.2反向击穿
3.6.3击穿区的二极管模型
3.7pn结电容
3.7.1反偏
3.7.2正偏
3.8肖特基势垒二极管
3.9二极管的SPICE模型及版图
3.9.1二极管的版图
3.10二极管电路分析
3.10.1负载线分析法
3.10.2二极管数学模型
分析法
3.10.3理想二极管模型
3.10.4恒压降模型
3.10.5模型比较与讨论
3.11多二极管电路
3.12二极管工作在击穿区域
的分析
3.12.1负载线分析
3.12.2分段线性模型
分析
3.12.3稳压器
3.12.4包含齐纳电阻的电路分析
3.12.5线性调整率和负载调整率
3.13半波整流电路
3.13.1带负载电阻的半波整流器
3.13.2整流滤波电容
3.13.3带RC负载的半波整流器
3.13.4纹波电压和导通期
3.13.5二极管电流
3.13.6浪涌电流
3.13.7额定峰值反向电压
3.13.8二极管功耗
3.13.9输出负电压的半波整流器
3.14全波整流电路
3.14.1输出负电压的全波
整流器
3.15全波桥式整流
3.16整流器的比较和折中设计
3.17二极管的动态开关行为
3.18光电二极管、太阳能电池和发光
二极管
3.18.1光电二极管和光探测器
3.18.2太阳能电池
3.18.3发光二极管(LED)
小结
关键词
参考文献
扩展阅读
习题
第4章
双极型晶体管
4.1双极型晶体管的物理结构
4.2npn晶体管的传输模型
4.2.1正向特性
4.2.2反向特性
4.2.3任意偏置条件下晶体管传输
模型方程
4.3pnp晶体管
4.4晶体管传输模型的
等效电路
4.5双极型晶体管的iv特性
4.5.1输出特性
4.5.2传输特性
4.6双极型晶体管的工作区
4.7传输模型的简化
4.7.1截止区的简化模型
4.7.2正向有源区的模型
简化
4.7.3双极型集成电路中的二极管
4.7.4反向有源区的简化模型
4.7.5饱和区模型
4.8双极型晶体管的非理想特性
4.8.1结击穿电压
4.8.2基区的少数载流子
传输
4.8.3基区传输时间
4.8.4扩散电容
4.8.5共发电流增益对频率的
依赖性
4.8.6Early效应和Early电压
4.8.7Early效应的建模
4.8.8Early效应的产生原因
4.9跨导
4.10双极型工艺与SPICE模型
4.10.1定量描述
4.10.2SPICE模型方程
4.10.3高性能双极型晶体管
4.11BJT的实际偏置电路
4.11.1四电阻偏置网络
4.11.2四电阻偏置网络的
设计目标
4.11.3四电阻偏置电路的
迭代分析
4.12偏置电路的容差
4.12.1最差情况分析
4.12.2蒙特卡洛分析
小结
关键词
参考文献
补充阅读
习题
第5章
场效应晶体管
5.1MOS电容特性
5.1.1积累区
5.1.2耗尽区
5.1.3反型区
5.2NMOS晶体管
5.2.1NMOS晶体管的iv特性的
定性描述
5.2.2NMOS晶体管的线性区
特性
5.2.3导通电阻
5.2.4跨导
5.2.5iv特性的饱和
5.2.6饱和(夹断)区的数学模型
5.2.7饱和跨导
5.2.8沟道长度调制
5.2.9传输特性及耗尽型
MOSFET
5.2.10体效应或衬底灵敏度
5.3PMOS晶体管
5.4MOSFET电路符号
5.5MOS晶体管对称性
5.5.1单晶体管Dram单元
5.5.21T细胞中的数据存储
5.5.3从1T细胞读取数据
5.6CMOS技术
5.6.1CMOS电压传输特性
5.7CMOS锁存器
5.8MOS晶体管电容
5.8.1NMOS晶体管的线性区
电容
5.8.2饱和区电容
5.8.3截止区电容
5.9SPICE中的MOSFET建模
5.10MOS晶体管的等比例缩放
5.10.1漏极电流
5.10.2栅极电容
5.10.3电流和功率密度
5.10.4功耗延迟积
5.10.5截止频率
5.10.6大电场限制
5.10.7包含高场限制的统一MOS
晶体管模型
5.10.8亚阈值导通
5.11全区域建模
5.11.1插值模型
5.11.2饱和区域的插值
模型
5.11.3跨导效率
5.12MOS晶体管的制造工艺及版图
设计规则
5.12.1最小特征尺寸和对准
容差
5.12.2MOS晶体管的版图
5.12.3CMOS逆变器布局
5.13先进CMOS技术
5.14NMOS场效应晶体管的偏置
5.14.1为什么需要偏置
5.14.2四电阻偏置
5.14.3恒定栅源电压偏置
5.14.4Q点的图形分析
5.14.5包含体效应的分析
5.14.6使用统一模型进行分析
5.14.7NMOS电路分析比较
5.14.8双电阻器偏置
5.15PMOS场效应晶体管的偏置
5.16偏置CMOS反相器作为放大器
5.17CMOS传输门
5.18结型场效应晶体管(JFET)
5.18.1偏压下的JFET
5.18.2漏源偏置下的JFET沟道
5.18.3n沟道JFET的iv特性
5.18.4p沟道JFET
5.18.5JFET的电路符号和
模型小结
5.18.6JFET电容
5.19JFET的SPICE模型
5.20JFET和耗尽型MOSFET的偏置
小结
关键词
参考文献
补充阅读
习题
第二部分
模拟电路
第6章
放大器简介
6.1模拟电子系统示例
6.2放大作用
6.2.1电压增益
6.2.2电流增益
6.2.3功率增益
6.2.4放大器的位置
6.2.5分贝
6.3放大器的二端口模型
6.3.1g参数
6.4源和负载电阻的失配
6.5差分放大器
6.5.1差分放大器的电压
传输特性
6.5.2电压增益
6.6放大器的失真
6.7差分放大器模型
6.8放大器的频率响应
6.8.1伯德图
6.8.2低通放大器
6.8.3高通放大器
6.8.4带通放大器
小结
关键词
参考文献
补充阅读
习题
第7章
晶体管放大器
7.1晶体管放大器
7.1.1BJT放大器
7.1.2MOSFET放大器
7.2耦合电容和旁路电容
7.3用直流和交流等效电路进行
电路分析
7.3.1直流和交流分析步骤
7.4小信号模型简介
7.4.1二极管小信号行为的
图形解释
7.4.2二极管的小信号建模
7.5双极型晶体管的小信号
模型
7.5.1混合π模型
7.5.2图解跨导
7.5.3小信号电流增益
7.5.4BJT的固有电压增益
7.5.5小信号模型的等效形式
7.5.6简化的混合π模型
7.5.7双极型晶体管的小信号
定义
7.5.8pnp晶体管的小信号
模型
7.5.9用SPICE进行交流分析和瞬态
分析的对比
7.6共射极放大器
7.6.1端电压增益
7.6.2输入电阻
7.6.3信号源电压增益
7.7重要限制及模型简化
7.7.1共射极放大器的
设计指导
7.7.2共射极增益的
上限
7.7.3共射极放大器的小信号
限制
7.8场效应晶体管的小信号模型
7.8.1MOSFET的小信号模型
7.8.2MOSFET的本征电压增益
7.8.3MOSFET小信号工作的
定义
7.8.4四端MOSFET中的
体效应
7.8.5PMOS晶体管的小信号模型
7.8.6弱反型区(亚阀值区)模式下MOS
管的小信号模型
7.8.7结型场效应晶体管的小信号
模型
7.9BJT和FET小信号模型的小结
与对比
7.10共源极放大器
7.10.1共源极端电压
增益
7.10.2共源极放大器的信号源
电压增益
7.10.3共源极放大器的
设计指导
7.10.4共源极放大器的小信号
限制
7.10.5共射极放大器和共源极放大器的
输入电阻
7.10.6共射极和共源极的输出
电阻
7.10.7三个放大器实例的
比较
7.11共射极放大器和共源极放大器
小结
7.11.1可忽略晶体管输出电阻的
指南
7.12放大器功率和信号范围
7.12.1功耗
7.12.2信号范围
小结
关键词
参考文献
习题
第8章
采用单晶体管放大器构
建块
8.1放大器分类
8.1.1双极型晶体管的信号注入和抽取
8.1.2场效应管的信号注入和抽取
8.1.3共发射极(CE)和共源极(CS)
放大器
8.1.4共集电极(CC)和共漏极(CD)
拓扑图
8.1.5共基极(CB)和共栅极(CG)
放大器
8.1.6小信号模型回顾
8.2反相放大器——共射极和共源极
放大器电路
8.2.1共发射极(CE)放大器
8.2.2共发射极实例的比较
8.2.3共源极放大器
8.2.4共源极放大器的小信号范围
8.2.5共发射极和共源极放大器
特性
8.2.6CE/CS放大器小结
8.2.7通用CE/CS晶体管的等效
晶体管表示
8.3跟随器电路——共集电极和共漏极
放大器
8.3.1端电压增益
8.3.2输入电阻
8.3.3信号源电压增益
8.3.4跟随器信号范围
8.3.5跟随器的输出电阻
8.3.6电流增益
8.3.7CC/CD放大器小结
8.4同相放大器——共基极和共栅极
电路
8.4.1端电压增益和输入
电阻
8.4.2信号源电压增益
8.4.3输入信号范围
8.4.4集电极和漏极端的
电阻
8.4.5电流增益
8.4.6同相放大器的总体输入和
输出电阻
8.4.7CB/CG放大器小结
8.5放大器原型回顾和
比较
8.5.1双极型晶体管放大器
8.5.2FET放大器
8.6采用MOS反相器的共源极
放大器
8.6.1电压增益估算
8.6.2详细分析
8.6.3其他可选负载
8.6.4输入和输出电阻
8.7耦合和旁路电容设计
8.7.1共发射极和共源极
放大器
8.7.2共集电极和共漏极
放大器
8.7.3共基极和共栅极
放大器
8.7.4设置下限截止频率fL
8.8放大器设计实例
8.8.1共基极放大器设计的
蒙特卡洛分析
8.9多级交流耦合放大器
8.9.1三级交流耦合放大器
8.9.2电压增益
8.9.3输入电阻
8.9.4信号源的电压增益
8.9.5输出电阻
8.9.6电流和功率增益
8.9.7输入信号范围
8.9.8估算多级放大器的截止频率
下限
8.10直流耦合放大器简介
8.10.1直流耦合三级放大器
8.10.2双晶体管直流耦合放大器
小结
关键词
扩展阅读
习题
第9章
放大器频率响应
9.1放大器频率响应
9.1.1低频响应
9.1.2缺少主极点情况下
估算ωL
9.1.3高频响应
9.1.4缺少主极点情况下
估算ωH
9.2直接确定低频极点和零点——共源
放大器
9.3用短路时间常数法估算
ωL的值
9.3.1估算共发射极放大器
的ωL
9.3.2估算共源极放大器
的ωL
9.3.3估算共基极放大器
的ωL
9.3.4估算共栅极放大器
的ωL
9.3.5估算共集电极放大器
的ωL
9.3.6估算共漏极放大器
的ωL
9.4高频晶体管模型
9.4.1双极型晶体管与频率相关的混合
π模型
9.4.2在SPICE中对Cπ和Cμ建模
9.4.3单位增益频率fT
9.4.4FET的高频模型
9.4.5运用SPICE为CGS和CGD建模
9.4.6fT与沟道长度的关系
9.4.7高频模型的局限性
9.5混合π模型中的基区
电阻
9.5.1基区电阻对中频放大器
的影响
9.6共发射极和共源极放大器的
高频响应
9.6.1密勒效应
9.6.2共发射极和共源极放大器的
高频响应
9.6.3共发射极放大器传输特性的
直接分析
9.6.4共发射极放大器的极点
9.6.5共源极放大器的
主极点
9.6.6用开路时间常数法
估算ωH
9.6.7包含源极衰减电阻的共源
放大器
9.6.8包含发射极衰减电阻的共发射极放大器
的极点
9.7共基极和共栅极放大器的
高频响应
9.8共集电极和共漏极放大器的
高频响应
9.9单级放大器高频响应
小结
9.9.1放大器的增益带宽
限制
9.10多级放大器的频率响应
9.10.1差分放大器
9.10.2共集电极/共基极
串联
9.10.3Cascode放大器的高频
响应
9.10.4电流镜的截止频率
9.10.5三级放大器实例
9.11射频电路介绍
9.11.1射频放大器
9.11.2并联峰化放大器
9.11.3单级调谐放大器
9.11.4抽头电感的运用——自耦
变压器
9.11.5多级调谐电路——同步调谐
和参差调谐
9.11.6包含衰减电感的共源
放大器
9.12混频器和平衡调制器
9.12.1混频器工作原理简介
9.12.2单平衡混频器
9.12.3差分对实现的单平衡
混频器
9.12.4双平衡混频器
9.12.5Jones混频器——双平衡混频器
/调制器
小结
关键词
参考文献
习题
第三部分
运算放大器和反馈
第10章
理想运算放大器
10.1理想差分放大器和运算放大器
10.1.1理想运算放大器分析中
的假设
10.2理想运算放大器电路
的分析
10.2.1反相放大器
10.2.2互阻放大器——电流/电压
转换器
10.2.3同相放大器
10.2.4单位增益缓冲器或电压
跟随器
10.2.5求和放大器
10.2.6差分放大器
10.3反馈放大器的频率特性
10.3.1有源低通滤波器
10.3.2有源高通滤波器
10.3.3积分器
10.3.4微分器
小结
关键词
参考文献
补充阅读
习题
第11章
非线性运算放大器和反馈放大器
的稳定性
11.1经典反馈系统
11.1.1闭环增益分析
11.1.2增益误差
11.2含有非理想运算放大器的
电路分析
11.2.1有限开环增益
11.2.2非零输出电阻
11.2.3有限输入电阻
11.2.4非理想反相和同相放大器
小结
11.3串联反馈和并联反馈电路
11.3.1反馈放大器类型
11.3.2电压放大器——电压串联
反馈
11.3.3跨阻放大器——电压并联
反馈
11.3.4电流放大器——电流并联
反馈
11.3.5跨导放大器——电流串联
反馈
11.4反馈放大器计算的统一
方法
11.4.1闭环增益分析
11.4.2利用Blackman理论计算
电阻
11.5电压串联反馈放大器——电压放大器
11.5.1闭环增益计算
11.5.2输入电阻计算
11.5.3输出电阻计算
11.5.4电压串联反馈放大器
小结
11.6电压并联反馈放大器——跨阻
放大器
11.6.1闭环增益分析
11.6.2输入电阻计算
11.6.3输出电阻计算
11.6.4电压并联反馈放大器
小结
11.7电流串联反馈放大器——跨导
放大器
11.7.1闭环增益计算
11.7.2输入电阻计算
11.7.3输出电阻计算
11.7.4电流串联反馈放大器
小结
11.8电流并联反馈放大器——电流放大器
11.8.1闭环增益计算
11.8.2输入电阻计算
11.8.3输出电阻计算
11.8.4电流并联反馈放大器
总结
11.9使用持续电压和电流注入法计算
回路增益
11.9.1简化
11.10利用反馈减小
失真
11.11直流误差源和输出摆幅
限制
11.11.1输入失调电压
11.11.2失调电压调节
11.11.3输入偏置电流和输入失调电流
11.11.4输出电压和电流限制
11.12共模抑制比和输入
电阻
11.12.1有限共模抑
制比
11.12.2共模抑制比的重要性
11.12.3由CMRR产生的电压跟随器
增益误差
11.12.4共模输入电阻
11.12.5CMRR的另一种解释
11.12.6电源抑制比
11.13运算放大器的频率响应
和带宽
11.13.1同相放大器的频率
响应
11.13.2反相放大器的频率
响应
11.13.3利用反馈控制频率
响应
11.13.4大信号限制——摆率和满功率
带宽
11.13.5运算放大器频率响应的宏
模型
11.13.6运算放大器的SPICE宏
模型
11.13.7通用运算放大器
实例
11.14反馈放大器的稳定性
11.14.1奈奎斯特图
11.14.2一阶系统
11.14.3二阶系统和相位
裕度
11.14.4阶跃响应和相位裕度
11.14.5三阶系统和增益
裕度
11.14.6根据伯德图判断
稳定性
小结
关键词
参考文献
习题
第12章
运算放大器应用
12.1级联放大器
12.1.1二端口表示
12.1.2放大器专有名词回顾
12.1.3级联放大器的频率
响应
12.2仪表放大器
12.3有源滤波器
12.3.1低通滤波器
12.3.2带增益的高通滤波器
12.3.3带通滤波器
12.3.4灵敏度
12.3.5幅值和频率缩放
12.4开关电容电路
12.4.1开关电容积分器
12.4.2同相SC积分器
12.4.3开关电容滤波器
12.5数/模转换
12.5.1数/模转换器基础
12.5.2数/模转换器误差
12.5.3数/模转换电路
12.6模/数转换
12.6.1模/数转换器基础
12.6.2模/数转换器误差
12.6.3基本模/数转换技术
12.7振荡器
12.7.1振荡的巴克豪森
准则
12.7.2带频率选择RC网络的
振荡器
12.8非线性电路的应用
12.8.1精密半波整流器
12.8.2非饱和的精准整流
电路
12.9正反馈电路
12.9.1比较器和施密特触发器
12.9.2非稳态多谐振荡器
12.9.3单稳态多谐振荡器或单稳态
电路
小结
关键词
补充阅读
习题
第13章
差分放大器和运算放大器
设计
13.1差分放大器
13.1.1双极型和MOS差分
放大器
13.1.2双极型差分放大器的直流
分析
13.1.3双极型差分放大器的传输
特性
13.1.4双极型差分放大器的交流
分析
13.1.5差模增益以及输入和输出
电阻
13.1.6共模增益和输入
电阻
13.1.7共模抑制比(CMRR)
13.1.8差模和共模的半电路
分析
13.1.9电流源的偏置
13.1.10在SPICE中为电子电流
源建模
13.1.11MOSFET差分放大器的
直流分析
13.1.12差模输入信号
13.1.13MOS差分放大器的小信号
传输特性
13.1.14共模输入信号
13.1.15差分对模型
13.2基本运算放大器的演进
13.2.1运算放大器的两级原型
13.2.2提高运算放大器的电压增益
13.2.3达林顿对
13.2.4减小输出电阻
13.2.5CMOS运算放大器
原型
13.2.6BiCMOS放大器
13.2.7全晶体管实现电路
13.3输出级
13.3.1源极跟随器——A类
输出级
13.3.2A类放大器的效率
13.3.3B类推挽输出级
13.3.4AB类放大器
13.3.5运算放大器的AB类
输出级
13.3.6短路保护
13.3.7变压器耦合
13.4电子电流源
13.4.1单晶体管电流源
13.4.2电路源的品质因数
13.4.3高输出电阻电流源
13.4.4电流源设计实例
小结
关键词
参考文献
补充阅读
习题
第14章
模拟集成电路设计
技术
14.1电路元件匹配
14.2电流镜
14.2.1MOS晶体管电流镜的
直流分析
14.2.2改变MOS镜像比率
14.2.3双极型晶体管电流镜的
直流分析
14.2.4改变BJT电流镜的镜像比率
14.2.5多级电流源
14.2.6缓冲电流镜
14.2.7电流镜像的输出
阻抗
14.2.8电流镜的二端口
模型
14.2.9Widlar电流源
14.2.10MOS管Widlar电
流源
14.2.11弱反转中的MOS
Widlar源
14.3高输出电阻电流镜
14.3.1Wilson电流源
14.3.2Wilson电流源的
输出电阻
14.3.3Cascode电流源
14.3.4Cascode电流源的
输出电阻
14.3.5可调Cascode电流源
14.3.6电流镜小结
14.4参考电流的产生
14.5与电源电压无关的偏置
14.5.1基于VBE的参考源
14.5.2Widlar电流源
14.5.3与电源电压无关的
偏置单元
14.5.4与电源电压无关的MOS
参考单元
14.6带隙基准源
14.7电流镜作为有源负载
14.7.1带有源负载的CMOS
差分放大器
14.7.2带有源负载的双极
差分放大器
14.8运算放大器中的源负载
14.8.1CMOS运算放大器电压增益
14.8.2直流设计注意事项
14.8.3双极型运算放大器
14.8.4输入级击穿
14.9μA741运算放大器
14.9.1电路总体工作原理
14.9.2偏置电路
14.9.3μA741输入级的直流分析
14.9.4μA741输入级的交流分析
14.9.5整体放大器的
电压增益
14.9.6μA741的输出级
14.9.7输出阻抗
14.9.8短路保护电路
14.9.9μA741运算放大器
特性小结
14.10Gilbert模拟乘法器
小结
关键词
参考文献
补充阅读
习题
第15章
晶体管反馈放大器与
振荡器
15.1基本反馈系统回顾
15.1.1闭环增益
15.1.2闭环阻抗
15.1.3反馈的作用
15.2反馈放大器的中频分析
15.2.1闭环增益
15.2.2输入电阻
15.2.3输出电阻
15.2.4偏移电压计算
15.3反馈放大电路举例
15.3.1串并反馈(电压串联反馈)
——电压放大器
15.3.2差分输入串并电压
放大器
15.3.3并并反馈(电压并联反馈)
—— 跨阻放大器
15.3.4串串反馈(电流串联反馈)
——跨导放大器
15.3.5并串反馈(电流并联反馈)
——电流放大器
15.4反馈放大器稳定性回顾
15.4.1未补偿放大器的
闭环响应
15.4.2相位裕度
15.4.3高阶效应
15.4.4补偿放大器
响应
15.4.5小信号限制
15.5单极点运算放大器
补偿
15.5.1三级运放分析
15.5.2场效应管运放的传输零点
15.5.3双极性放大器补偿
15.5.4运算放大器的
摆率
15.5.5摆率与增益带宽积之间
的关系
15.6高频振荡器
15.6.1Colpitts 振荡器
15.6.2Hartley 振荡器
15.6.3LC振荡器的幅值
稳定
15.6.4振荡器中的负阻
15.6.5负Gm振荡器
15.6.6晶体振荡器
15.6.7环形振荡器
15.6.8正反馈和闭锁
小结
关键词
补充阅读
习题
附录
附录A标准离散元件参数
附录B固态器件模型及SPICE
仿真参数
附录C二端口网络回顾
附录D物理常数和晶体管
模型概述