目录
大纲+课件
第1章人工智能之深度学习
1.1人工智能简介
1.1.1基本概念
1.1.2发展历程
1.2深度学习简介
1.3深度学习在医学影像处理中的应用
1.4本章小结
参考文献
第2章医学成像简介
2.1X射线成像
2.1.1成像原理
2.1.2影像特点
2.1.3临床应用
2.2CT成像
2.2.1成像原理
2.2.2影像特点
2.2.3临床应用
2.3MRI成像
2.3.1成像原理
2.3.2影像特点
2.3.3临床应用
2.4超声成像
2.4.1成像原理
2.4.2影像特点
2.4.3临床应用
2.5医疗内窥镜成像
2.5.1成像原理
2.5.2影像特点
2.5.3临床应用
2.6数字病理成像
2.6.1成像原理
2.6.2影像特点
2.6.3临床应用
2.7本章小结
参考文献
第3章深度学习环境
3.1编程语言和环境
3.1.1编程语言
3.1.2编程环境
3.2深度学习框架
3.3PyTorch深度学习环境的搭建
3.4本章小结
参考文献
第4章基于深度学习的医学影像分类
4.1引言
4.2卷积神经网络
4.3面向分类的深度神经网络
4.4临床选题
4.5医学影像数据集的构建
4.5.1医学影像的收集
4.5.2医学影像的标注
4.6网络的训练和测试
4.6.1数据集的划分
4.6.2数据预处理
4.6.3分类网络的选择
4.6.4损失函数和优化方式
4.6.5网络超参数的调整
4.6.6欠拟合和过拟合
4.7分类性能的评价
4.7.1基于指标体系的性能评价
4.7.2基于人机对比的性能评价
4.7.3基于压力测试的性能评价
4.7.4类激活映射图
4.8本章小结
参考文献
第5章基于深度学习的医学影像目标检测
5.1引言
5.2面向目标检测的深度神经网络
5.2.1Twostage方案
5.2.2Onestage方案
5.3临床选题
5.4医学影像数据集的构建
5.4.1医学影像的收集
5.4.2医学影像的标注
5.5网络的训练和测试
5.5.1数据集的划分
5.5.2数据预处理
5.5.3目标检测网络的选择
5.5.4损失函数和优化方式
5.5.5网络超参数的调整
5.6目标检测性能的评价
5.6.1基于指标体系的性能评价
5.6.2基于人机对比的性能评价
5.6.3基于压力测试的性能评价
5.7本章小结
参考文献
第6章基于深度学习的医学影像分割
6.1引言
6.2面向分割的深度神经网络
6.3临床选题
6.4医学影像数据集的构建
6.4.1医学影像数据的收集
6.4.2医学影像数据的标注
6.5网络的训练和测试
6.5.1数据集的划分
6.5.2数据集的预处理
6.5.3分割网络的选取
6.5.4损失函数和优化方式
6.5.5网络超参数的调整
6.6分割性能的评价
6.6.1基于指标体系的性能评价
6.6.2基于实际应用的性能评价
6.7本章小结
参考文献
第7章医学影像公开数据集
7.1引言
7.2面向分类的公开数据集
7.3面向目标检测的公开数据集
7.4面向分割的公开数据集
7.5公开数据集的优势和不足
7.6本章小结
参考文献
案例篇
案例1乳腺肿瘤良恶性的识别
案例2新型冠状病毒感染的识别
案例3心影增大的检测
案例4红细胞的检测
案例5心脏MRI的分割
案例6超声心动图的分割