从20世纪70年代Cleve Moler开发MATLAB开始, MATLAB受到学术界和工业界的欢迎,用户超过200万。然而,很多算法的MATLAB实现代码都有加速的需求。以深度学习为例,相关的MATLAB代码需要运行数小时甚至数天的时间。GPU计算和CUDA编程为MATLAB加速提供了很好的解决方案。
现代的硬件技术的发展,使MATLAB程序的开发者和使用者能够拥有多核(multicore)、大内存等有效工具;图形处理器(Graphics Processing Unit,GPU)具有很好的加速能力。同时,一些公司还推出了专用的计算加速卡,如英伟达公司的Tesla系列计算加速卡、AMD公司的Fire Pro系列计算加速卡、Intel公司的Xeon Phi计算加速卡等。