图书推荐

"全面总结作者多年数字图像处理算法的研究心得和实践经验。
带领读者系统掌握数字图像处理的相关理论知识和实际应用。
深入剖析张量运算方法在数字图像处理中的应用。
详解梯度下降算法的完整流程,并将其应用于模型优化中。
详解数据集的构建以及模型的训练和部署等核心知识。
详解图像分类、图像分割和目标检测三大核心任务。
提供教学视频、程序源代码和教学PPT等配套资源。

内容丰富:不但介绍PyTorch的基础知识和数字图像处理的相关理论,而且从张量的维度详解经典数字图像处理算法,并从深度学习的维度详解图像分类、图像分割和图像检测三大核心任务。
学习门槛低:从计算机视觉和数字图像的基本概念开始讲解,继而介绍开发环境的搭建、Python基础知识和PyTorch基础知识等,不需要读者有太多基础知识即可快速入门。
理论结合实践:不但对数字图像处理的主流算法理论进行系统讲解,而且在此基础上结合丰富的实战案例,用PyTorch深度学习框架进行应用实践。
图文并茂:结合多幅示意图讲解相关知识点,让抽象的知识变得更加直观和易于理解,从而帮助读者高效学习。
实用性强:结合大量真实的图像处理案例进行讲解,读者只需要对书中的案例源代码进行少量的改动,即可将其应用于自己的图像处理工作中。
配套资源丰富:提供高清教学视频、程序源代码和教学PPT等配套资源,便于读者高效、直观地学习,从而取得更好的学习效果。"