Pub date: December 1, 2016
ISBN: 9787302453765
Rights:
216 p.p.
Preface ...................................................................................................I
_x000D_
Chapter 1 Introduction..................................................................... 1
_x000D_
1.1 Intention and Signi.cances ....................................................... 1
_x000D_
1.2 Basic Concepts ........................................................................ 7
_x000D_
1.3 Some Examples.......................................................................14
_x000D_
1.4 Preliminaries ..........................................................................18
_x000D_
Chapter 2 Cauchy Problem for Nonlinear Hyperbolic Systems in Diagonal Form ...........................................................25 _x000D_
2.1 The Single Nonlinear Hyperbolic Equation ...............................25
_x000D_
2.2 The Classical Solutions to Single Nonlinear Hyperbolic Equation ................................................................................32 _x000D_
2.3 Nonlinear Hyperbolic Equations in Diagonal Form....................40
_x000D_
Chapter 3 Singularities Caused by the Eigenvectors ....................50
_x000D_
3.1 Introduction ...........................................................................50
_x000D_
3.2 Completely Reducible Systems.................................................55
_x000D_
3.3 2-Step Completely Reducible Systems ......................................59
_x000D_
3.4 m(m> 2)-Step Completely Reducible Systems with Constant Eigenvalues ..............................................................67 _x000D_
3.5 Non-completely Reducible Systems ..........................................74
_x000D_
3.6 Examples ...............................................................................76
_x000D_
Chapter 4 Hyperbolic Geometric Flow on Riemannian Surfaces...........................................................................85 _x000D_
4.1 Introduction ...........................................................................85
_x000D_
4.2 Cauchy Problem for Hyperbolic Geometric Flow.......................87
_x000D_
4.3 Mixed Initial Boundary Value Problem for Hyperbolic Geometric Flow ......................................................................99 _x000D_
4.4 Dissipative Hyperbolic Geometric Flow .................................. 107
_x000D_
4.5 Explicit Solutions..................................................................119
_x000D_
4.6 Radial Solutions to Hyperbolic Geometric Flow ...................... 124
_x000D_
Chapter 5 Life-Span of Classical Solutions to Hyperbolic Geometric Flow in Two Space Variables with Slow Decay Initial Data .............................................. 127 _x000D_
5.1 Intention and Signi.cances .................................................... 127
_x000D_
5.2 Some Useful Lemmas ............................................................ 130
_x000D_
5.3 Lower Bound of Life-Span ..................................................... 143
_x000D_
Chapter 6 Nonlinear Hyperbolic Systems with Relaxation ...... 153 _x000D_
6.1 Introduction ......................................................................... 153
_x000D_
6.2 Global Classical Solutions...................................................... 155
_x000D_
6.3 Applications .........................................................................162
_x000D_
6.4 Convergence of Approximate Solutions...................................165
_x000D_
Chapter 7 Applications.................................................................. 175
_x000D_
7.1 One Dimensional Hydromagnetic Dynamics............................175
_x000D_
7.2 Fluid Flow on a Pipe ............................................................ 187
_x000D_
7.3 Heat Conduction with Finite of Propagation .......................... 189
_x000D_
7.4 A Nonlinear Systems in Viscoelasticity...................................191
_x000D_
Bibliography ...................................................................................... 202
_x000D_
Index .................................................................................................. 209
_x000D_
_x000D_
_x000D_
_x000D_
_x000D_