Our Books
Turn pages, spark change. We inspire, empower and advance learners.
Our Books
Turn pages, spark change. We inspire, empower and advance learners.
Nonlinear hyperbolic partial differential equations
ByYuzhu Wang, Fagui Liu

Pub date: December 1, 2016

ISBN: 9787302453765

Rights:

216 p.p.

Description
About Author
Table of Contents
This book is concerned mainly with the initial value problem for nonlinear hyperbolic partial differential equations. Some basic methods and techniques of studying hyperbolic equations are presented. In the book, global existence , singularities , blow up and life span of classical solutions to hyperbolic equations are discussed. Some related problems for hyperbolic geometric flow on Riemann surfaces are studied. The book can be used for students and postgraduates majoring in mathematics, teachers,scientists and engineers.

Preface ...................................................................................................I

_x000D_

Chapter 1 Introduction..................................................................... 1

_x000D_

1.1 Intention and Signi.cances ....................................................... 1

_x000D_

1.2 Basic Concepts ........................................................................ 7

_x000D_

1.3 Some Examples.......................................................................14

_x000D_

1.4 Preliminaries ..........................................................................18

_x000D_

Chapter 2 Cauchy Problem for Nonlinear Hyperbolic Systems in Diagonal Form ...........................................................25 _x000D_

2.1 The Single Nonlinear Hyperbolic Equation ...............................25

_x000D_

2.2 The Classical Solutions to Single Nonlinear Hyperbolic Equation ................................................................................32 _x000D_

2.3 Nonlinear Hyperbolic Equations in Diagonal Form....................40

_x000D_

Chapter 3 Singularities Caused by the Eigenvectors ....................50

_x000D_

3.1 Introduction ...........................................................................50

_x000D_

3.2 Completely Reducible Systems.................................................55

_x000D_

3.3 2-Step Completely Reducible Systems ......................................59

_x000D_

3.4 m(m> 2)-Step Completely Reducible Systems with Constant Eigenvalues ..............................................................67 _x000D_

3.5 Non-completely Reducible Systems ..........................................74

_x000D_

3.6 Examples ...............................................................................76

_x000D_

Chapter 4 Hyperbolic Geometric Flow on Riemannian Surfaces...........................................................................85 _x000D_

4.1 Introduction ...........................................................................85

_x000D_

4.2 Cauchy Problem for Hyperbolic Geometric Flow.......................87

_x000D_

4.3 Mixed Initial Boundary Value Problem for Hyperbolic Geometric Flow ......................................................................99 _x000D_

4.4 Dissipative Hyperbolic Geometric Flow .................................. 107

_x000D_

4.5 Explicit Solutions..................................................................119

_x000D_

4.6 Radial Solutions to Hyperbolic Geometric Flow ...................... 124

_x000D_

Chapter 5 Life-Span of Classical Solutions to Hyperbolic Geometric Flow in Two Space Variables with Slow Decay Initial Data .............................................. 127 _x000D_

5.1 Intention and Signi.cances .................................................... 127

_x000D_

5.2 Some Useful Lemmas ............................................................ 130

_x000D_

5.3 Lower Bound of Life-Span ..................................................... 143

_x000D_

Chapter 6 Nonlinear Hyperbolic Systems with Relaxation ...... 153 _x000D_

6.1 Introduction ......................................................................... 153

_x000D_

6.2 Global Classical Solutions...................................................... 155

_x000D_

6.3 Applications .........................................................................162

_x000D_

6.4 Convergence of Approximate Solutions...................................165

_x000D_

Chapter 7 Applications.................................................................. 175

_x000D_

7.1 One Dimensional Hydromagnetic Dynamics............................175

_x000D_

7.2 Fluid Flow on a Pipe ............................................................ 187

_x000D_

7.3 Heat Conduction with Finite of Propagation .......................... 189

_x000D_

7.4 A Nonlinear Systems in Viscoelasticity...................................191

_x000D_

Bibliography ...................................................................................... 202

_x000D_

Index .................................................................................................. 209

_x000D_

_x000D_

_x000D_

_x000D_

_x000D_