





作者:李海林、郭崇慧
定价:98元
印次:1-1
ISBN:9787302603528
出版日期:2022.05.01
印刷日期:2022.05.17
图书责编:王定
图书分类:零售
本书以时间序列数据为研究对象,对时间序列数据的特征表示和相似性度量进行较为深入和系统的研究,讲述了如何从数据特征的不同角度进行数据降维,结合设计相应的相似性度量方法实现时间序列数据挖掘,同时将相关的特征表示和相似性度量方法应用于文本主题、经济金融、情报分析和发动机参数等具体领域。全书分为 11章:第1章对研究的背景和现状进行了分析,解释了为什么要研究时间序列数据的特征表示和相似性度量。第2章至第6章从时间序列数据的不同视角出发,深入浅出地介绍了新的时间序列数据特征表示和相似性度量等预处理方法。第7章到第10章以主题分析、股票预测、文献分析、发动机参数特征识别和故障检测为目标,将时间序列数据挖掘中的特征表示和相似性度量方法应用于解决具体行业中的相关管理科学问题。第11章对研究进行了总结,并提出了研究的创新和未来研究方向。 本书的研究内容主要涉及统计学、计算机科学、经济学和管理学等,适合从事经济金融、电子信息、生物医学、工业与工程等工作的技术人员、管理人员或有志从事相关领域科学研究的本科生、研究生学习或参考。通过阅读和学习本书,读者可以较好地了解时间序列数据挖掘与传统时间序列数据分析的不同,为今后的时间序列数据的相关研究奠定基础。
李海林 ,男,博士 ,教授 ,博士生导师 ,曾任华侨大学工商管理学院院长助理 ,信息管理系主任 ,教务处副处长 ,研究方向为数据科学和创新管理等 ;国家自然科学基金通讯评审专家 ,教育部学位中心研究生学位论文评审专家 ,中国信息经济学会理事会理事 ,中国系统工程学会数据与知识专委会委员 ,泉州市信息化项目评审专家 ;在InformationSciences、Pat-ternRecognition、《系统工程理论与实践》《科学学研究》和《情报学报》等国内外重要刊物 ,以及 SIGKDD、ICDM和PAKDD等国际数据挖掘会议上发表论文70余篇 ,其中大部分被 SSCI、 20多篇论文分别发表在运筹SCI和 EI收录 ,学与管理科学、人工智能和应用数学等领域的 TOP期刊 ,近30篇论文发表在中科院 SCI和SSCI分区 1区和 2区期刊 ;主持 2项国家自然科学基金和 6项省部级项目 ,参与完成其他各类级科研项目 10余项 ;以第一作者身份获福建省“第十二届社会科学优秀成果奖二等奖 ”(政府奖 ),入选福建省 “ABC高层次人才 ”、福建省 “高校新世纪优秀人才支持计划 ”、福建省 “高校杰出青年科研人才培育计划 ”,博士论文被评为辽宁省 “优秀博士学位论文 ”,被评为泉州市第三层次人才 ,连续获得两届华侨大学 “学术英才 ”称号。郭崇慧 ,男,博士 ,教授 ,博士生导师 ,大连理工大学系统工程研究所所长 ,大数据与智能决策研究中心主任 ,大连市数据科学与知识管理重点实验室主任 ,曾任管理科学与工程学院院长 ;中国系统工程学会常务理事 ,中国管理科学与工程学会常务理事 ,辽宁省数量经济学会常务理事 ,辽宁省运筹学会理事 ,辽宁省自动化学会理事 ,国家自然科学基金委创新研究群体学术骨干 ,《系统工程理论与实践》和《系统工程与电子技术》编委 ; 2007年入选 “辽宁省百千万人才工程 ”人选 ,2011年入选教育部 “新世纪优秀人才支持计划 ”;担2013年访问悉尼科技大学量子计算与智能系统研究中心 ,任高级研究学者;担任高级研究2016年访问新泽西州立大学罗格斯商学院,学者;主要研究方向为系统建模与优化、数据挖掘与商务智能、决策理论与方法、知识管理;主持国家自然科学基金面上项目、国家软科学研究计划项目、中国博士后科学基金项目等,参与完成国家973重点基础研究发展项目、国家高科技研究发展计划863项目、国家自然科学基金重大国际合作研究项目、国家自然科学基金重点项目等国家级科研项目10余项;在国内外学术期刊发表论文10余篇,其中SCI收录30余篇,EI收录60余篇;出版著作及教材6部,译著1部。
前 言 随着社会经济和信息技术的发展 ,时间序列的数据量增长越来越快 ,相应地 ,利用数据挖掘技术在时间序列数据库中发现潜在的有价值的信息和知识也备受关注 ,其研究成果已被成功地应用于经济、金融、电子信息、医疗卫生、教育、工业和工程等领域。然而,时间序列数据的特征表示和相似性度量是时间序列数据挖掘任务中最为基础和关键的工作 ,其质量直接影响时间序列数据挖掘的结果。时间序列数据随时间的推移而不断增长 ,数据的高维、动态、不确定等特性阻碍了传统数据挖掘技术性能的发挥。特征表示的主要目的是利用少量特征近似表示原始时间序列 ,起到有效降维的作用 ,进而提高数据挖掘任务的效率。相似性度量是测量时间序列之间差异性的方法 ,通常结合特征表示方法对时间序列之间的相似性进行快速、有效地度量 ,其度量结果可用于分类、聚类、相似性搜索和异常模式发现等时间序列数据挖掘任务中。本研究分别以等长和不等长的单变量时间序列为主要研究对象 ,探讨利用不同的方法对这些时间序列数据进行特征表示和相似性度量 ,使得各种方法能更为完善和有效地运用于时间序列数据挖掘,并解决与时间序列挖掘任务相关的管理和应用问题 ,获取潜在有价值的信息和知识。本书的主要内容如下。 (提出基于正交多项式回 1)从等长时间序列的整体特征出发 ,归系数特征表示的相似性度量方法。通过分析多项式最高项次数对时间序列整体形态拟合效果的影响 ,选取合适的特征系数反映时间序列的主要形态趋势 ,提出更适合特征序列的相似性度量方法,并且在理论上证明其满足下界性 ,提高特征表示和相似性度量在时间序列相似性搜索中的性能。 (2)针对分段聚合近似表示...
第1章绪论1
1.1选题背景及研究意义1
1.1.1选题背景2
1.1.2研究意义4
1.2研究现状和已有研究的不足之处7
1.2.1特征表示研究现状8
1.2.2相似性度量研究现状17
1.2.3已有研究的不足之处27
1.3本书研究内容和框架结构29
1.3.1研究内容30
1.3.2框架结构32
第2章基于正交多项式回归系数的特征表示及相似性度量36
2.1正交多项式回归系数特征表示37
2.2拟合效果分析38
2.3相似性度量40
2.4数值实验45
2.4.1拟合误差分析46
2.4.2下界紧凑性及数据剪枝能力47
2.4.3时间序列分类和聚类50
2.5本章小结53
第3章分段聚合特征表示及相似性度量55
3.1分段聚合近似56
3.2基于二维统计特征的分段聚合近似57
3.2.1分段聚合近似的下界性58
3.2.2线性统计特征59
3.2.3非线性统计特征62
3.2.4数值实验63
3.3基于二维形态特征的分段符号聚合近似65
3.3.1形态特征符号聚合近似67
3.3.2相似性度量及算法描述71
3.3.3数值实验73
3.4基于主要形态特征的分段聚合近似74
3.4.1主要形态特征表示75
3.4.2形态特征相似性度量80
3.4.3数值实验82
3.5本章小结89
第4章时间序列分段云模型特征表示及相似性度量91
4.1云模型简介92
4.2时间序列云模型特征表示95
4.2.1时间序列分段云近似96
4.2.2自适应分段云近似98
4.3云模型相似性度量... 查看详情
内容系统性
特征表示和相似性度量是时间序列数据挖掘过程中一项重要而又基础的数据预处理工作,其质量和效率直接影响后期相关时
时间序列数据的特征表示、相似性度量及其应用研究间序列数据挖掘算法和模型的效果。本书从时间序列数据的不同
特点出发,深人和系统地研究和分析其特征表示和相似性度量方法,并结合相应的数据挖掘任务进行实验比较和分析,同时也将研
究成果应用于具体应用中,从时间序列数据视角更好地解决实际问题。
案例新颖性
本书对时间序列数据特征表示和相似性度量的方法有效性与先进性进行深人分析及研究,实验过程中使用了大量的公共数据
集,使得实验案例具有--定的代表性。同时,除了将特征表示和相似性度量方法应用于常见的金融股票数据外,还将它们应用于文
献数据分析、文本主题分析和发动机参数检测等与时间序列间接相关的新颖案例中,进而拓展了解决实际应用问题的理论和方法。