





定价:99元
印次:1-6
ISBN:9787302538295
出版日期:2020.06.01
印刷日期:2025.05.09
图书责编:刘星
图书分类:教材
《强化学习》一书内容系统全面,覆盖面广,既有理论阐述、公式推导,又有丰富的典型案例,理论联系实际。书中全面系统地描述了强化学习的起源、背景和分类,各类强化学习算法的原理、实现方式以及各算法间的关系,为读者构建了一个完整的强化学习知识体系;同时包含丰富的经典案例,如各类迷宫寻宝、飞翔小鸟、扑克牌、小车爬山、倒立摆、钟摆、多臂赌博机、五子棋、AlphaGo、AlphaGo Zero、AlphaZero等,通过给出它们对应的详细案例说明和代码描述,让读者深度理解各类强化学习算法的精髓。《强化学习》案例生动形象,描述深入浅出,代码简洁易懂,注释详细。 《强化学习》可作为高等院校计算机、自动化及相关专业的本科生或研究生教材,也可供对强化学习感兴趣的研究人员和工程技术人员阅读参考。
邹伟 博士,睿客邦创始人,研究方向为机器学习、数据挖掘、计算几何,致力于机器学习和深度学习在实际中的应用;主持研发50多个人工智能领域工业级项目,并受邀在中国移动、花旗银行、中信集团、中航信、烽火科技、京东方、完美世界等公司进行了上百场讲座和内部培训。创立的睿客邦与国内十多所高校建立了AI联合实验室或实训基地;兼任天津大学创业导师、山东交通学院客座教授等。曾在多个在线平台讲授“机器学习”“深度学习”等课程,广受网友好评,累计学习人数超过百万。鬲玲 硕士,北京神舟航天软件公司知识工程团队负责人,资深研发工程师。研究方向为知识工程、语义检索、强化学习、自然语言处理。作为牵头单位技术负责人参与并完成国家科技支撑计划项目1项,863计划项目1项。有多年知识管理系统以及自然语言处理项目研发经验,目前正致力于垂直领域知识图谱的落地以及强化学习在自然语言处理领域的应用。刘昱杓 现供职于央视市场研究,深度学习、强化学习研发工程师,研究方向为计算机视觉。有多年深度学习视觉方向开发经验,参与了多个图像识别、目标检测、目标追踪等领域的落地项目。目前专注于深度强化学习方向的研究。
前言 一、 为什么要写本书 强化学习日渐流行,作为当今社会最热门的研究课题之一,其关注度正与日俱增。强化学习是机器学习的一个分支,通过与环境的交互进行学习,目前广泛应用于游戏领域,如ATARI游戏、西洋双陆棋、AlphaZero等。由于它具有自学习的特性,因此在机器人、工业自动化、自然语言处理、医疗保健及在线股票交易等领域受到了广泛重视,并取得了众多成果。 强化学习是一门实践性很强的学科,同时也具有坚实的理论基础。但目前市面上关于强化学习的书籍过于偏重理论推导和分析,很少以应用为导向来介绍与该算法相关的工程实践及相关代码实现,难以引起读者(特别是初学者)的兴趣,从而无法使其对强化学习算法进行深入的了解和学习。 本书紧扣读者需求,采用循序渐进的叙述方式,深入浅出地论述了强化学习的背景、算法原理、应用案例等; 此外,本书针对每一章节的算法均提供了对应的案例和程序源代码,并附有详细的注释,有助于读者加深对强化学习相关知识的理解。 通过本书,读者可以从零起步了解并掌握强化学习算法,并且能够快速选择合适的算法去解决实际问题。更进一步,通过学习本书,读者能够丰富对人类自身的认识,并启发对人机智能之争更深一层的思考与探索。 二、 内容特色 与同类书籍相比,本书有如下特色。 1. 由浅入深,循序渐进 本书以具备机器学习基础知识的本科生或研究生为对象,先介绍强化学习的基本概念及分类,接着以强化学习拟解决的问题为着眼点,将强化学习要解决的问题转化为求解马尔可夫模型。然后由浅入深地给出了求解此模型的基础求解方法和联合求解方法,其中,基础求解法均为查表型算...
目录
第1章强化学习概述
1.1强化学习的背景
1.2强化学习初探
1.2.1智能体和环境
1.2.2智能体主要组成
1.2.3强化学习、监督学习、非监督学习
1.2.4强化学习分类
1.2.5研究方法
1.2.6发展历程
1.3强化学习的重点概念
1.3.1学习与规划
1.3.2探索与利用
1.3.3预测与控制
1.4小结
1.5习题
第2章马尔可夫决策过程
2.1马尔可夫基本概念
2.1.1马尔可夫性
2.1.2马尔可夫过程
2.1.3马尔可夫决策过程
2.2贝尔曼方程
2.2.1贝尔曼期望方程
2.2.2贝尔曼最优方程
2.3最优策略
2.3.1最优策略定义
2.3.2求解最优策略
2.4小结
2.5习题
第3章动态规划
3.1动态规划简介
3.2策略评估
3.3策略改进
3.4策略迭代
3.5值迭代
3.6实例讲解
3.6.1“找宝藏”环境描述
3.6.2策略迭代
3.6.3值迭代
3.6.4实例小结
3.7小结
3.8习题
第4章蒙特卡罗
4.1蒙特卡罗简介
4.2蒙特卡罗评估
4.3蒙特卡罗控制
4.4在线策略蒙特卡罗
4.5离线策略蒙特卡罗
4.5.1重要性采样离线策略蒙特卡罗
4.5.2加权重要性采样离线策略蒙特卡罗
4.6实例讲解
... 查看详情
《强化学习》作者具有丰富的行业实践经验,使得内容兼具理论性与实用性,不仅给出了算法的运行流程,还给出了该类算法的应用案例。书中列举了近20个强化学习算法案例,可以帮助读者快速提升自己的能力。
查看详情