





作者:[英]斯沃纳·古普塔(Swarna Gupta) [英]雷汉·阿里·安萨里(Rehan Ali Ansari) [英]迪帕扬·萨卡尔(Dipayan Sarkar)著,毛国君 林江宏 译
定价:79元
印次:1-1
ISBN:9787302606987
出版日期:2022.09.01
印刷日期:2022.08.24
图书责编:刘星
图书分类:零售
针对每个想要了解深度学习概念的数据科学爱好者,本书通过通俗易懂地解释R代码,让读者可以很容易起步。在深度学习算法和应用的理论和实践方面做到了平衡,在讲述基础理论的同时,通过45个基于R语言的编程实例让读者循序渐进地掌握深度学习技术。 ? 读者将通过实战案例实现卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)、序列到序列模型、生成对抗网络(GAN)和强化学习,还将学习使用GPU进行大型数据集的高性能计算,以及R语言中的并行计算编程。 ? 各个部分内容安排合理,按照“准备工作→操作步骤→原理解析→内容拓展→参考阅读”的流程组织内容,清楚地讲解实战案例的实现过程。
斯沃纳·古普塔拥有计算机科学学士学位,在数据科学领域有6年的经验。她目前以数据科学家的身份与劳斯莱斯合作。她的工作围绕着利用数据科学和机器学习为企业创造价值。她在车辆远程信息处理和太阳能制造工业中广泛从事基于物联网的项目,在她目前与劳斯莱斯的合作中,她致力于各种深入学习技术和解决航空领域车队问题的解决方案。她还从繁忙的日程中抽出时间,成为社会组织的定期公益贡献者,借助数据科学和机器学习,帮助他们解决具体的商业问题。
前言 近年来,随着生成对抗网络(GAN)、变分自动编码器和深度强化学习等技术的发展,深度学习取得了巨大进展。本书是读者采用R语言实现深度学习技术的操作手册。 本书引导读者通过R语言编程实现各种深度学习技术。本书提供的一套实例将帮助读者解决回归、二项分类和多项分类问题,并详细探索超参数优化等问题。读者将通过实战案例实现卷积神经网络(CNN)、循环神经网络(RNN)、长短时记忆网络(LSTM)、序列到序列模型、生成对抗网络(GAN)和强化学习。读者学习使用GPU进行大型数据集的高性能计算,以及R语言中的并行计算编程,还将熟悉诸如MXNet这样的并行编程库,这些库是专为高效利用图形处理器(GPU)计算和实现最先进的深度学习算法而设计的。读者将学习如何解决NLP中常见和不那么常见的问题,如目标检测和动作识别,还将在深度学习应用程序中利用预先训练好的模型进行迁移学习。 阅读完本书,读者将对深度学习算法和不同的深度学习编程库有一个深刻的理解,并将能够为要解决的问题构建最合适的解决方案。 读者对象 本书为数据科学家、机器学习实践者、深度学习研究人员和AI爱好者提供了学习深度学习领域关键算法的实战案例。读者可能会在研究工作或项目中面临实现深度学习技术和算法的问题。要更好地阅读本书,必须具备机器学习基础知识和R语言的编程知识。 内容结构 第1章 理解人工神经网络和深度神经网络,将向读者展示如何建立一个深度学习环境来训练模型。然后向读者介绍人工神经网络,从人工神经网络如何工作、什么是隐藏层、什么是误差反向传播、什么是激活函数等概念开始讲解。本章使用Keras库来演示实战案...
第1章理解人工神经网络和深度神经网络
1.1配置环境
1.1.1准备工作
1.1.2操作步骤
1.1.3原理解析
1.1.4内容拓展
1.1.5参考阅读
1.2神经网络的Keras实现
1.3序贯模型API
1.3.1准备工作
1.3.2操作步骤
1.3.3原理解析
1.3.4内容拓展
1.3.5参考阅读
1.4函数式API
1.4.1操作步骤
1.4.2原理解析
1.4.3内容拓展
1.5TensorFlow Estimator API
1.5.1准备工作
1.5.2操作步骤
1.5.3原理解析
1.5.4内容拓展
1.5.5参考阅读
1.6TensorFlow Core API
1.6.1准备工作
1.6.2操作步骤
1.6.3原理解析
1.7实现单层神经网络
1.7.1准备工作
1.7.2操作步骤
1.7.3原理解析
1.7.4内容拓展
1.7.5参考阅读
1.8实现第一个深度神经网络
1.8.1准备工作
1.8.2操作步骤
1.8.3原理解析
1.8.4内容拓展
1.8.5参考阅读
第2章卷积神经网络实战
2.1卷积运算导论
2.1.1准备工作
2.1.2操作步骤
2.1.3原理解析
2.1.4内容拓展
2.1.5参考阅读
2.2理解卷积步幅和填充
2.2.1...
(2) 各个部分内容安排合理,按照“准备工作→操作步骤→原理解析→内容拓展→参考阅读”的流程组织内容,清楚地讲解实战案例的实现过程。
(3)提供程序代码和彩色图片。