首页 > 图书中心 >图书详情

人工智能概论

提供课件,咨询QQ:2301891038(仅限教师)。面向本专科大一新生,适合作为人工智能通识课教材

作者:肖汉光、王勇 主编,黄同愿、郑小洋、刘瑞华、张宜浩、邹洋杨、涂飞 副主编
定价:39.80
印次:1-2
ISBN:9787302559672
出版日期:2020.09.01
印刷日期:2021.01.05

本书主要介绍人工智能的发展历史、技术和应用,内容主要包括知识图谱、搜索技术、智能优化算法、机器学习、人工神经网络、深度学习、人工智能应用(人脸识别、语音识别、自然语言处理、机器人等)、人工智能工具、人工智能伦理等。本书的特色是通过案例为主线,提出关键问题,以解决问题为导向,介绍人工智能领域的相关概念、理论、技术和应用,采用启发式和讨论式的写作风格,让学生更具有代入感、参与感和获得感。主要面向本专科大一新生。

more >

前言 人工智能是当代经济发展的新引擎,大数据时代和5G通信时代的到来助推着人工智能这艘“航母”高速前进。我国《新一代人工智能发展规划》的发布,标志着人工智能国家发展战略开始正式实施。由此,正催生出一大批新的人工智能企业,倒逼着传统行业的智能改造和转型,同时也引发了各个行业对人工智能人才的渴求。因此,推进人工智能+传统专业的通识教育势在必行,特别是对了解人工智能基本知识、掌握人工智能技术的专业人才的培养迫在眉睫。为此,编写一本人工智能通识性教材十分必要。 本书面向大学一年级新生,在写作风格上尽量做到通俗易懂、言简意赅。本书开篇介绍了人工智能的定义和发展历史。然后,在人工智能的技术层面,深入浅出地讲解了机器学习、人工神经网络、深度学习、知识表示、专家系统、搜索技术、群智能算法等核心技术。最后,在人工智能的应用层面,介绍了两个热门的应用领域——图像识别和自然语言处理。全书力争将人工智能的发展脉络、技术与理论、当前产业发展和成果等翔实地展现给读者。本书适合讲授16~32学时,书中部分章节的标题标注了星号,表示该节是选讲内容。 本书的编写汇集了多位教师的智慧。本书第1章由刘瑞华编写,第2章由肖汉光编写,第3章由王勇编写,第4章由邹洋杨编写,第5章由涂飞编写,第6章由郑小洋编写,第7章由黄同愿编写,第8章由张宜浩编写。全书由肖汉光统稿。在本书编写过程中,突遇新冠肺炎疫情暴发,整个写作团队克服困难、团结协作,按时、保质保量地完成了本书的撰写工作,在此对他们表示衷心的感谢。 由于写作团队学识有限,成书较为仓促,加之近年来人工智能理论和技术发展迅速,对该领域的最新发展难以全面了解,因此,书中不足之处在所难免。请读者不吝指教,我们将不胜感激。 与本书配套的相关资源可以从清华大学出版社网站www.tup.com.cn下载,包括PPT电子课件、案例演示的源代码等,供讲授时参考。如果读者在本书与课件的使用中遇到问题,或对本书有任何意见与建议,请发邮件到404905510@qq.com。 肖汉光2020年4月于重庆两江人工智能学院

more >
扫描二维码
下载APP了解更多

同系列产品more >

KVM+Docker+OpenStack实战——虚拟...

王金恒、刘卓华、王煜林
定 价:49.80元

查看详情
人工智能算法与实战(Python+PyTor...

于祥雨、李旭静、邵新平
定 价:59.90元

查看详情
机器学习(Python+sklearn+TensorF...

王衡军
定 价:69.90元

查看详情
大数据技术与应用-微课视频版

肖政宏 李俊杰 谢志明
定 价:49.80元

查看详情
大数据可视化技术与应用-微课视频版...

黄源、蒋文豪、徐受蓉、
定 价:49.80元

查看详情
图书分类全部图书
more >
  • 肖汉光,博士,教授,重庆理工大学两江人工智能学院智能科学系主任,主要从事人工智能、机器学习、模式识别等方面的研究工作。现为国家自然科学基金通讯评审专家,国际期刊同行评审专家,中国和美国计算机学会会员。主持和参与国际和国家自然科学基金项目5项,主持和参与省部级科研项目6项,主持横向项目2项。以第一作者发表SCI和EI论文约20篇。以主编身份编写著作和教材3部,授权国家发明专利6项。
  • * 构建完整的人工智能知识体系

    * 涵盖人工智能主流应用

    * 同步人工智能领域最新进展

    * 未涉及复杂的数学公式,适合人工智能初学者
more >
  • 目录 第1章绪论 1.1什么是人工智能 1.1.1人工智能的定义 1.1.2人工智能的研究领域 1.1.3人工智能的发展现状 1.2人工智能简史 1.2.1人工智能的诞生(1943—1956年) 1.2.2人工智能的起步期(1956—1974年) 1.2.3人工智能的第一个低谷(1974—1980年) 1.2.4人工智能的应用发展期(1980—1989年) 1.2.5人工智能的第二个低谷(1989—1993年) 1.2.6人工智能的稳步发展期(1993—2006年) 1.2.7人工智能的蓬勃发展期(2006年至今) 1.3人工智能的流派 1.3.1符号主义流派 1.3.2联结主义流派 1.3.3行为主义流派 1.3.4代表人物 1.4人工智能的应用与挑战 1.4.1中国人工智能的国家战略 1.4.2人工智能行业的未来格局 1.4.3迎接人工智能2.0的挑战和机遇 参考文献 扩展阅读 习题1 第2章机器学习 2.1引言 2.1.1机器学习的定义和基本概念 2.1.2机器学习的分类 2.1.3机器学习的发展历程 2.2监督学习 2.2.1监督学习的定义 2.2.2K近邻算法 2.2.3决策树 2.2.4支持向量机 2.3无监督学习 2.3.1无监督学习的任务 2.3.2KMeans聚类算法 2.3.3层次聚类算法 2.3.4基于密度的聚类算...

精彩书评more >

标题

评论

版权所有(C)2019 清华大学出版社有限公司 京ICP备10035462号 京公网安备11010802013248号

联系我们 | 网站地图 | 法律声明 | 友情链接 | 盗版举报 | 人才招聘