首页 > 图书中心 >图书详情
机器学习入门——基于Sklearn
作者:周元哲
丛书名:计算机系列教材
定价:49.90元
印次:1-4
ISBN:9787302599982
出版日期:2022.02.01
印刷日期:2023.06.29
本书以Python为基础,使用Sklearn平台,逐步带领读者熟悉并掌握机器学习的经典算法。全书共12章,主要内容包括人工智能概述、Python科学计算、数据清洗与特征预处理、数据划分与特征提取、特征降维与特征选择、模型评估与选择、KNN算法、决策树、线性模型、朴素贝叶斯算法、支持向量机和k均值聚类算法,附录介绍了课程教学大纲和Sklearn数据集。 本书内容精练,文字简洁,结构合理,案例经典且实用,综合性强,面向机器学习入门读者,侧重提高。 本书适合作为高等院校相关专业机器学习入门课程教材或教学参考书,也可以供从事机器学习应用开发的技术人员参考。
more >前言 零基础学习者掌握机器学习基础知识的路线可以从代码开始,参加Kaggle数据挖掘比赛,体会使用每个模型的效果,对机器学习涵盖的内容有大致了解后,再深入地对理论知识进行完善。本书面向零基础的学习者,以Python编程语言为基础,使用Sklearn平台,在不涉及大量数学模型与复杂编程知识的前提下,逐步带领学习者熟悉和掌握传统的机器学习算法。 机器学习的重要学习方法就是实践,本书的所有程序都是在Anaconda上调试和运行的。本书包括人工智能概述、Python科学计算、数据清洗与特征预处理、数据划分与特征提取、特征降维与特征选择、模型评估与选择、KNN算法、决策树、线性模型、朴素贝叶斯算法、支持向量机和k均值聚类算法,附录介绍了课程教学大纲和Sklearn数据集。 本书具有如下特点: (1) 代码完整,注释详细。大部分机器学习教材重理论轻代码,往往只是给出伪代码;而本书采用基于Python语言的Sklearn平台实现,便于学生更快地掌握机器学习的基本思想。 (2) 突出实用性,针对每个机器学习算法都有相关案例。 本书配有教学大纲、电子课件、源码等资料。在编写过程中,陕西省网络数据分析与智能处理重点实验室李晓戈和西安邮电大学贾阳、王红玉、高巍然、孔韦韦、张庆生等阅读了部分手稿,提出了很多宝贵的意见。本书在写作过程中参阅了大量中外专著、教材、论文、报告及网上的资料,在此一并表示敬意和衷心的感谢。 本书内容精练,文字简洁,结构合理,实训题目经典实用、综合性强,明确定位面向初、中级读者,由入门起步,侧重提高。特别适合作为高等院校本科或研究生相关专业机器学习入门课程的教材和教学参考书,也可以供从事计算机应用开发的技术人员参考。 由于作者水平有限,时间紧迫,书中难免有疏漏之处,恳请广大读者批评指正。 作者2021年7月
more >