





作者:[美]Gilbert Strang (吉尔伯特·斯特朗)
定价:108元
印次:1-4
ISBN:9787302668077
出版日期:2024.07.01
印刷日期:2025.06.30
图书责编:佟丽霞
图书分类:教材
"线性代数内容包括行列式、矩阵、线性方程组与向量、矩阵的特征值与特征向量、二次型及Mathematica 软件的应用等。 每章都配有习题,书后给出了习题答案。本书在编写中力求重点突出、由浅入深、 通俗易懂,努力体现教学的适用性。本书可作为高等院校工科专业的学生的教材,也可作为其他非数学类本科专业学生的教材或教学参考书。第一章:向量简介。围绕向量和点积的概念,在平面和空间中引入了线性组合和线性无关的概念。 第二章:求解线性方程组。从这个基本点出发,自然引入矩阵,高斯消元,初等矩阵,可逆矩阵等重要概念,并讲述了LU分解。 第三章:线性空间与子空间。从几何的角度来理解线性方程组,引入矩阵的秩,空间的维数等重要概念。导出线性代数基本定理。 第四章:正交。给出四个基本子空间的正交关系,引入最小二乘法,以及Gram-Schmidt正交化。 第五章:行列式。从体积的角度引入行列式,证明其各种基本性质 第六章:特征值与特征向量。从如何计算方阵的高次幂出发,给出引入二者的动机。然后讲解矩阵的对角化,对称矩阵,正定矩阵。 第七章:奇异值分解。介绍了奇异值分解这个基本定理,并给出了很多应用,例如求解常微分方程,图像压缩等。 第八章:线性变换。引入抽象的线性变换的概念,讲述线性变换的矩阵表示,对角化与伪逆。 第九章:复向量与复矩阵。讨论如何自然的引入和考虑复矩阵。然后讲解Hermitian矩阵和酉矩阵,并重点介绍了快速Fourier变换这一工程上极端有用的理论, 第十章:应用。这一章集中讲授了线性代数在各个领域中的应用。 第十一章:数值线性代数。从计算实现的角度来重新看线性代数。这一部分是算法,科学计算等的一个入门介绍。 第十二章:概率与统计中的线性代数。从线性代数的理论角度审视概率统计中的基本概念,尤其是多元随机变量,多元正态分布以及加权最小二乘法。 "
William Gilbert Strang(威廉·吉尔伯特·斯特朗),1934年11月27日于芝加哥出生,是美国享有盛誉的数学家,在有限元理论、变分法、小波分析及线性代数方面均有所建树。他对教育的贡献尤为卓著,包括所著有的七部经典数学教材及一部专著。斯特朗自1962年担任麻省理工学院教授,其所授课程《线性代数导论》、《计算科学与工程》均在麻省理工学院开放式课程计划(MIT Open Course Ware)中收录,并获得广泛好评。
Preface One goal of this Preface can be achieved right away. You need to know about the video lectures for MIT¡¯s Linear Algebra course Math 18.06. Those videos go with this book, and they are part of MIT¡¯s OpenCourseWare. The direct links to linear algebra are https://ocw.mit.edu/courses/18-06-linear-algebra-spring-2010/ https://ocw.mit.edu/courses/18-06sc-linear-algebra-fall-2011/ On YouTube those lectures are at https://ocw.mit.edu/1806videos and /1806scvideos The .rst link brings the original lectures from the dawn of OpenCourseWare. Problem solutions by graduate students (really good) and also a short introduction to linear algebra were added to the new 2011 lectures. And the c...
1 Vectors and Matrices 1
1.1 Vectors and Linear Combinations 2
1.2 Lengths and Angles from Dot Products 9
1.3 Matrices and Their Column Spaces 18
1.4 Matrix Multiplication AB and CR 27
2 Solving Linear Equations Ax = b 39
2.1 Elimination and Back Substitution 40
2.2 Elimination Matrices and Inverse Matrices 49
2.3 Matrix Computations and A = LU 57
2.4 Permutations and Transposes 64
2.5 Derivatives and Finite Difference Matrices 74
3 The Four Fundamental Subspaces 84
3.1 Vector Spaces and Subspaces 85
3.2 Computing the Nullspace by Elimination: A = CR 93
3.3 The Complete Solution to Ax = b 104
3.4 Independence, Basis, and Dimension 115
3.5 Dimensions ... 查看详情