Python数据分析
系统论述Python数据分析与处理的理论、方法与关键技术!全面涵盖数据分析、数据清洗、数据可视化!四位业内专家联袂推荐!提供源程序及数据集

作者:江雪松、邹静

丛书名:人工智能科学与技术丛书

定价:79元

印次:1-5

ISBN:9787302555179

出版日期:2020.07.01

印刷日期:2025.01.14

图书责编:盛东亮

图书分类:零售

电子书
在线购买
分享
内容简介
作者简介
前言序言
资源下载
查看详情 查看详情 查看详情

这是一个数据驱动的时代,如何解读数据,将数据转变为知识、利用知识做出决策将是所有企业必不可少的能力。在数据分析过程中我们清洗数据,探索数据,利用数据进行决策。本书将以当前***数据科学分析工具Python为基础介绍如何构建基于Python的数据科学环境,利用Pandas处理与分析数据,如何利用Matplotlib以及Seaborn进行数据可视化。同时本书还将以商业应用为目标,通过学习还将掌握何利用学习到的Python数据分析知识来完成客户留存分析,同期群分析,时间序列分析,产品销售数据的关联分析,客户聚类,统计检验等数据分析。

江雪松 2001年获工学硕士学位,曾服务于华为、诺基亚等公司,有丰富的产品团队与研发团队管理经验。先后担任项目经理、研发经理、产品研发负责人,管理多个产品全球支持与交付团队,软件维护业务。邹静 2006年获理学硕士学位,现服务于四川省人民医院,担任副主任药师。拥有十多年的临床药物试验设计、数据统计与分析经验。先后参加了多个国家自然科学基金项目及四川省卫生厅科研项目。

前言 根据Cummulus Media 2018年的数据,全球每分钟向谷歌发起370万次搜索,发送1800万条短信,YouTube上有430万条视频被观看,Facebook登录超过97万次,等等。人们刷微博、聊微信、用滴滴打车、用淘宝购物、用美团点外卖,每一条信息,每一次出行,每一次消费,每一次互动都成为其数字足迹!未来已来,我们进入了数据时代! 本人与数据正式结缘还要追溯到2003年担任软件项目经理时,当时分析项目团队的软件问题成为我的第一个数据分析任务。2009年,我开始管理多个产品的全球支持团队,与数据的关系更进了一步。作为通信设备商,我们的客户支持有本地技术支持、欧洲及美洲等区域技术支持以及全球技术支持。每层的技术人员解决的问题类型、难度、时间以及成本都不同,电信运营商的设备故障每分每秒都将给客户带来巨大影响。面对成千上万的客户问题,如何快速、高效、低成本地处理各种问题,需要用数据来帮助我们做出决策。2013年后,我开始转向负责软件维护业务,此时我关心的是: 如何从软件维护中获取更多收入; 如何更好地提高客户服务质量; 针对全球的客户,如何对客户进行细分; 哪些客户的维护业务对公司更有价值; 面对客户时如何说服他们维护业务带来的价值远远超过了成本。这一切更需要数据来支持! 不仅工作中需要数据思维,我们的生活也需要数据思维,它可以帮我们找工作、买房、从投资中获利,等等。那么什么是数据思维?数据思维最核心的思想是利用数据解决问题,而利用数据解决问题则需要深度了解需求,了解真正要解决什么样的问题,解决问题背后的真实目的是什么。在解决问题的过程中, ...

目录
荐语
查看详情 查看详情

目录

上篇Pandas数据分析基础

第1章数据分析初探

1.1“数据+”时代的到来

1.2什么是数据分析

1.2.1数据分析的目标

1.2.2数据分析分类

1.2.3典型的数据分析方法

1.3数据分析的基本流程

1.3.1问题定义

1.3.2收集数据

1.3.3数据处理

1.3.4数据分析

1.3.5结果解读与应用

1.4硝烟中的数据分析

1.4.1数据分析的产生

1.4.2验证问题

1.4.3寻找原因

1.4.4数据怎么说

1.4.5数据分析中应该避免的典型问题

第2章搭建数据科学开发环境

2.1为什么选择Python

2.1.1人生苦短,我用Python

2.1.2为何Python是数据科学家的最佳选择

2.2Python数据科学开发栈

2.2.1Cython

2.2.2NumPy

2.2.3IPython

2.2.4Jupyter

2.2.5SciPy

2.2.6Matplotlib

2.2.7Pandas

2.2.8Scikitlearn

2.2.9NetworkX

2.2.10PyMC3

2.2.11数据科学领域中最新的一些Python包

2.3Anaconda的安装与使用

2.3.1安装Anaconda

2.3.2利用Conda管理Python环境

2.3.3利用Conda管理Python包

2.3.4安... 查看详情

本书涉及的主题
 数据分析;
 数据清洗;
 数据可视化;
 探索性数据分析;
 概率分布与假设检验;
 群组分析;
 购物篮分析;
 时间序列分析。
本书突出的特点
 系统讨论基于Python的数据分析环境构建与数据分析流程;
 将数据分析理论与实践结合,基于真实的案例介绍数据分析。

查看详情