





定价:128元
印次:3-1
ISBN:9787302682578
出版日期:2025.03.01
印刷日期:2025.03.13
图书责编:盛东亮
图书分类:教材
"本书结合典型机械系统控制的实例,系统地介绍了神经网络控制的基本理论、基本方法和应用技术。本书是作者多年来从事控制系统教学和科研工作的结晶,同时融入了国内外同行近年来所取得的新成果。 全书共分16章,包括绪论、RBF神经网络的设计与仿真、基于梯度下降法的RBF神经网络控制、自适应RBF神经网络控制、RBF神经网络滑模控制、基于模型整体逼近的自适应RBF控制、基于局部逼近的自适应RBF控制、基于RBF神经网络的动态面自适应控制、数字RBF神经网络控制、离散神经网络控制、自适应RBF观测器设计及滑模控制、基于RBF神经网络的反演自适应控制、基于RBF神经网络的自适应容错控制、基于RBF神经网络的自适应量化控制、基于RBF神经网络的控制输出受限控制和基于RBF神经网络的控制方向未知的状态跟踪。每种控制方法都通过MATLAB进行了仿真分析。 "
刘金琨 北京航空航天大学自动化科学与电气工程学院教授,博士生导师,研究方向为控制理论与应用。曾于浙江大学工业控制技术研究所、香港科技大学从事研究工作;1999年11月至今在北京航空航天大学自动化科学与电气工程学院从事教学与科研工作,主讲“智能控制”“先进控制系统设计”“系统辨识”等课程。先后主持国家自然科学基金等科研项目10余项,发表学术论文100余篇。曾出版《先进PID控制MATLAB仿真》《机器人控制系统的设计与MATLAB仿真》《滑模变结构控制MATLAB仿真》《RBF神经网络自适应控制MATLAB仿真》《系统辨识》《微分器设计与应用——信号滤波与求导》《智能控制——理论基础、算法设计与应用》等著作10余部。
前言 神经网络控制出现于20世纪80年代,经历了几十年的发展,已形成了一个相对独立的研究分支,成为智能控制系统的一种设计方法,适用于线性与非线性系统、连续与离散系统、确定性与不确定性系统、集中参数与分布参数系统、集中控制与分散控制系统等。 神经网络具有高度并行的结构、强大的学习能力、连续非线性函数逼近能力、容错能力等优点,极大地促进与拓展了神经网络技术在非线性系统辨识与控制中的应用。在实际工业过程中,存在着非线性、未建模动态、不可测噪声以及多环路等问题,这些问题对控制系统设计提出了很大的挑战。 与传统的控制策略相比,神经网络在如下几方面具有优势。 (1) 神经网络对任意函数都具有学习能力,神经网络的自学习能力可避免在传统自适应控制理论中占有重要地位的复杂数学分析。 (2) 针对传统控制方法不能解决的高度非线性控制问题,多层神经网络的隐含层神经元采用了激活函数,具有非线性映射功能,这种映射可以逼近任意非线性函数,为解决非线性控制问题提供了有效的解决途径。 (3) 传统自适应控制方法需要模型先验信息来设计控制方案,由于神经网络的逼近能力,控制器不需要具体的模型信息。因此,神经网络控制可以被广泛用于解决具有不确定模型的控制问题。 (4) 在神经网络大规模并行处理架构下,网络的某些节点损坏并不影响整个神经网络的整体性能,有效地提高了控制系统的容错性。 有关神经网络控制理论及其工程应用,近年来已有大量的论文发表。作者多年来一直从事智能控制及应用方面的研究和教学工作,为了促进神经网络控制和自动化技术的进步,反映神经网络控制设计与应用中的最新研...
目录
第1章绪论
1.1神经网络控制
1.1.1神经网络控制的提出
1.1.2神经网络控制概述
1.1.3自适应RBF神经网络概述
1.2RBF神经网络
1.3机器人RBF神经网络控制
1.4控制系统S函数设计
1.4.1S函数介绍
1.4.2S函数基本参数
1.4.3实例
1.5简单自适应控制系统设计实例
1.5.1系统描述
1.5.2自适应控制律设计
1.5.3仿真实例
附录仿真程序
参考文献
第2章RBF神经网络设计与仿真
2.1RBF神经网络算法及仿真
2.1.1RBF神经网络算法设计
2.1.2RBF神经网络设计实例及MATLAB仿真
2.2基于梯度下降法的RBF神经网络逼近
2.2.1RBF神经网络逼近
2.2.2仿真实例
2.3高斯函数的参数对RBF神经网络逼近的影响
2.4隐含层节点数对RBF神经网络逼近的影响
2.5RBF神经网络的建模训练
2.5.1RBF神经网络训练
2.5.2仿真实例
2.6RBF神经网络逼近
附录仿真程序
参考文献
第3章基于梯度下降法的RBF神经网络控制
3.1基于RBF神经网络的监督控制
3.1.1RBF监督控制
3.1.2仿真实例
3.2基于RBF神经网络的模型参考自适应控制
3.2.1控制系统设计
3.2.2仿真实例
3.3RBF神经网络自校正控制
3.3.1系统描述
3...
(1) 神经网络控制算法重点研究学科交叉部分的前沿内容,并介绍有潜力的新思想、新方法,同时又兼顾基本概念、基本理论和基本设计方法。
(2) 针对每种神经网络控制算法给出了完整的MATLAB仿真程序,并给出了程序的说明和仿真结果,具有很强的可读性。
(3) 着重从应用领域角度出发,突出理论联系实际,面向广大工程技术人员,具有很强的工程性和实用性。书中同时提供了大量应用实例及其结果分析,为读者提供了有益的借鉴。
(4) 书中给出的各种神经网络控制算法非常完整,其程序结构设计简洁明了,便于自学和进一步开发。
学习资源
仿真程序
注:提供全书配套仿真程序,便于读者动手实践。上述文件可到清华大学出版社网站本书页面(或“人工智能科学与技术”微信公众号)下载。"