





定价:99元
印次:1-5
ISBN:9787302594727
出版日期:2022.01.01
印刷日期:2025.03.03
图书责编:曾珊
图书分类:教材
本书是一部论述机器学习原理与算法的立体化教材(含纸质图书、教学课件和部分视频教程),本书兼顾机器学习基础、经典方法和深度学习方法。对组成机器学习的基础知识和基本算法做了比较细致的介绍,对广泛应用的经典算法如线性回归、逻辑回归、朴素贝叶斯、支持向量机、决策树和集成学习等算法都给出了深入的分析,并讨论了无监督学习的基本方法。用5章的篇幅对深度学习和深度强化学习做了相当全面的叙述,不仅深入地讨论了反向传播算法、多层感知机、CNN网络、RNN网络和LSTM结构等深度神经网络的核心知识和结构,对于一些发展中的专题如生成对抗网络(GAN)和Transformer等也予以一定深度的介绍。对于强化学习,不仅介绍了经典表格方法,也较详细地讨论了深度强化学习。本书是面向大学理工科和管理类各专业的一本宽口径、综合性机器学习教材,可供本科高年级和研究生课程使用,也可供科技人员、工程师和程序员自学机器学习的原理和算法之用。本书对基础和前沿、经典方法和热门技术做了尽可能地平衡,使得读者不仅能在机器学习领域打下一个良好的基础,同时也可以利用所学知识解决遇到的实际问题并进入学科前沿。
张旭东 清华大学电子工程系长聘教授,博士生导师,主要研究方向为信号处理和机器学习。先后承担国家级、省部级和国际合作项目数十项,在IEEE、IET、ACM等重要刊物和NIPS、AAAI、ICASSP、SIGIR等重要会议上发表学术论文150余篇,出版著作5部。获得Elsevier的**引用奖(The Most Cited Paper Award)和IET国际雷达年会**论文奖,两次获得清华大学教学成果一等奖,三次获得清华大学优秀教材奖。
前言 机器学习已经成为一种解决诸多问题的有效工具,广泛应用于多学科交叉领域。本书以理工科高年级本科生和一年级研究生的基础知识为起点,以面向工程应用为目标,适度侧重电子信息专业学生,并尽可能满足其他专业需求,是一本通用性和专业性兼顾的机器学习教材。通过学习本书,读者可以为掌握机器学习的本质和算法、解决实际问题以及开展与本领域相关的研究打下基础。 不考虑机器学习当前的热度,其解决问题的思想和方法有长远价值,今后或许会有冷热反复,但这是一个有长远发展的方向。 本书是作者在清华大学讲授“机器学习”课程的讲义基础上修订而成的,该课程主要面向电子信息专业的本科生和研究生的“本研贯通”课程,对其他理工科和管理类专业开放,先后有20多个院系的本科生和研究生也选修了该课程。 作为“机器学习”课程的教材,本书在材料选择上做了尽可能的平衡,既要反映机器学习的基础知识和经典方法,又要重视近期非常活跃的深度学习的内容。由于机器学习的成果非常丰富,构成一本教材的材料的可选择面非常广,因此我们在基础和前沿的材料中做了仔细的选择。深度学习很重要,尤其是当前的一些商业化应用(包括计算机视觉、语音识别、自然语言处理、推荐系统、信息检索等),既有大数据支持,又可以通过大规模计算系统进行训练(学习),取得了许多重要进展。但并不是所有应用都有必要使用深度学习,许多问题用传统机器学习技术就可以取得很好的结果,尤其是一些工程中的专门领域,获取大数据集是非常困难的,对于这些领域,经典的机器学习方法可得到更广泛应用。 基于以上考虑,本书对机器学习的经典算法和深度学习算法都给予相当深入的介绍,全书内容分为6个单元。...
目录
第1章机器学习概述
1.1什么是机器学习
1.2机器学习的分类
1.2.1基本分类
1.2.2监督学习及其功能分类
1.3构建机器学习系统
1.3.1机器学习的基本元素
1.3.2机器学习的一些基本概念
1.3.3机器学习模型的性能评估
1.4通过简单示例理解机器学习
1.4.1一个简单的回归示例
1.4.2一个简单的分类示例
1.5训练、验证与测试
1.6深度学习简介
1.7本章小结
习题
第2章统计与优化基础
2.1概率基础
2.1.1离散随机变量
2.1.2连续随机变量
2.1.3随机变量的基本特征
2.1.4随机特征的蒙特卡洛逼近
2.2概率实例
2.2.1离散随机变量示例
2.2.2高斯分布
2.2.3指数族
2.2.4混合高斯过程
2.2.5马尔可夫过程
2.3最大似然估计
2.4贝叶斯估计——最大后验估计
2.5随机变量的熵特征
2.5.1熵的定义和基本性质
2.5.2KL散度、互信息和负熵
2.6非参数方法
2.7优化技术概述
2.7.1基本优化算法
2.7.2拉格朗日方法
2.8本章小结
习题
第3章贝叶斯决策
3.1机器学习中的决策
3.2分类的决策
3.2.1加权错误率准则
3.2.2拒绝判决
3.3回归的决策
3.4高斯情况下的分类决策
... 查看详情
本书既反映机器学习的基础知识和经典方法,又重视深度学习和强化学习的知识内容,使读者不仅能在机器学习领域打下坚实的基础,同时也可以利用所学知识解决遇到的实际问题并进入学科前沿。本书的主要内容包括:
机器学习理论概述;
机器学习的统计与优化基础;
基本回归与分类学习算法;
支持向量机;
决策树与集成学习;
无监督学习算法;
神经网络与深度学习;
深度学习专题(GAN、Transformer等);
强化学习与深度强化学习。
教学资源
微课视频
教学大纲
教学课件
习题解答