


定价:59.9元
印次:1-1
ISBN:9787302698371
出版日期:2025.08.01
印刷日期:2025.08.08
图书责编:陈景辉
图书分类:教材
"CAD工业软件是现代工程产品研发的重要工具,广泛应用于航空、航天、船舶、汽车、电子等领域产品的研发设计过程中。本书将基础理论和算法实现相结合,系统地介绍CAD工业软件中涉及的关键几何理论与算法,包括贝齐尔曲线和曲面、B样条曲线和曲面、有理B样条曲线和曲面以及T样条曲面等相关知识。同时介绍在逆向工程中有重要应用的点的投影与拟合算法、自由型曲面三维造型中的多类高级造型方法和面向CAD/CAE一体化的等几何分析方法及其应用。全书共9章,分别介绍微分几何基础、参数曲线和曲面、贝齐尔曲线和曲面、B样条曲线和曲面、有理B样条曲线和曲面、T样条曲面、点的投影与拟合、NURBS曲面造型方法、等几何分析及应用等知识。 本书主要面向广大从事CAX工业软件开发、计算机辅助几何设计、飞行器设计与制造、机械设计制造及自动化等领域研究工作的专业人员,从事高等教育的专任教师,高等学校的在读高年级本科生、硕博士研究生及相关领域的广大科研人员。 "
前言 工 业软件的发展构筑了当今产业体系的灵魂,在推动我国制造业转型升级、提升产业水平和促进经济增长等方面具有重要意义,高端工业软件是实现我国从制造大国走向制造强国目标的重器之一。研发设计类软件是工业软件的关键,以计算机辅助设计(CAD)、计算机辅助工程(CAE)和计算机辅助制造(CAM)等为代表,广泛应用于航空、航天、船舶、机械、电子等各行各业,是装备研发不可或缺的一环。在2021年5月的两院院士大会上,习近平总书记发表重要讲话,强调了发展国产自主工业软件的紧迫性,他指出,要从国家急迫需要和长远需求出发,在工业软件等方面的关键核心技术上全力攻坚。计算机辅助几何设计技术作为CAD软件的核心理论基础,通过研究曲线、曲面和形体的数学表示方法及其性质,为复杂工程产品的创建、修改和分析提供基础工具。 本书主要内容 本书可视为一本基础理论、算法实现和应用相结合的书籍,注重基础理论的推导与详解,适合具备一定数学基础和编程开发经验的读者学习。 全书共有9章。 第1章微分几何基础,包括矢量与矢函数、曲线和曲面的表示与基本性质。第2章参数曲线和曲面,包括参数多项式插值与逼近、参数样条曲线、参数样条曲面。第3章贝齐尔曲线和曲面,包括贝齐尔曲线的定义和性质、贝齐尔曲线的计算、贝齐尔曲面的定义与计算。第4章B样条曲线和曲面,包括B样条曲线的定义与基础计算、B样条曲线的高效几何算法、B样条曲面的定义与计算。第5章有理B样条曲线和曲面,包括NURBS曲线的定义和计算、NURBS曲面的定义和计算、圆锥曲线的NURBS构造。第6章T样条曲面,包括T样条曲面基础...
目录
第1章微分几何基础
1.1矢量与矢函数
1.1.1矢量
1.1.2矢函数
1.2曲线的表示与基本性质
1.2.1曲线的矢函数表达
1.2.2导矢与弧长参数化
1.2.3弗朗内特标架与曲线论基本公式
1.3曲面的表示与基本性质
1.3.1曲面参数表达、切矢与法矢
1.3.2曲面上的曲线
1.3.3直纹面与可展曲面
1.3.4曲面的曲率性质
第2章参数曲线和曲面
2.1参数多项式插值与逼近
2.1.1插值与逼近
2.1.2多项式基函数
2.1.3多项式插值曲线
2.1.4最小二乘逼近
2.1.5曲线数据点参数化
2.2参数样条曲线
2.2.1弗格森三次曲线
2.2.2分段参数三次曲线
2.2.3样条曲线
2.2.4参数三次样条曲线
2.2.5边界条件
2.3参数样条曲面
2.3.1张量积曲面
2.3.2曲面数据点参数化
2.3.3参数多项式插值曲面
2.3.4弗格森双三次曲面片
2.3.5弗格森双三次样条曲面
2.3.6孔斯双三次样条曲面
2.3.7参数双三次样条曲面
CAD工业软件中的几何理论与算法
目录
第3章贝齐尔曲线和曲面
3.1贝齐尔曲线的定义和性质
3.1.1贝齐尔曲线的定义
3.1.2伯恩斯坦基函数
3.1.3贝齐尔曲线的性质
3.2贝齐尔曲线的计算
3.2.1曲线递推计算
... 查看详情
"(1)系统性强,内容全面。
本书覆盖了计算机辅助几何设计基础理论的核心内容,从基础概念、理论性质、关键算法、重要应用等方面构建了较为完整的知识体系。
(2)循序渐进,层次分明。
本书按照理论技术的发展脉络,在简要介绍微分几何和参数曲线曲面相关知识的基础上,重点介绍工程实际中有广泛应用的贝齐尔、B样条、NURBS和T样条相关理论和方法。
(3)与时俱进,紧跟前沿。
本书结合**的研究成果和学科动态,在传统理论知识的基础上,融入了前沿领域的相关知识,包括T样条曲面造型和等几何分析等,使读者能够了解学科前沿,拓宽学术视野。
(4)通俗易懂,图文并茂。
本书写作简洁明了,为理论公式和核心算法配备了大量图例,帮助读者理解相关方法的具体实现。同时,为重要知识点配置了教学示例,使读者能够易于理解和接受。
"





