





定价:52元
印次:3-11
ISBN:9787302454724
出版日期:2016.11.01
印刷日期:2025.01.08
图书责编:刘颖
图书分类:教材
本书介绍了偏微分方程数值解的两类主要方法:有限差分方法和有限元方法.其内容包括有限差分方法的基本概念;双曲型方程、抛物型方程及椭圆型方程的有限差分方法;数学物理方程的变分原理;有限元离散方法以及其他一些相关的课题等.在介绍每种具体方法的同时,还给出了相应的理论分析.各章附有习题. 本书可作为高等学校理工科专业研究生教材,有关本科专业也可作教材使用,此外也可供从事科学与工程计算的科技人员参考.
三轮修改、调整,使讲授内容与教学实际密切配合。
本书第2版自出版以来,被不少工科院校研究生用作教材,使用中发现了一些错误和不妥,在重印中我们曾作了一些勘误. 这次修订除了改正一些已发现的不妥和错误外,对非线性问题的内容作了删减和调整. 第3章增加了第7节,其内容部分取自原版第6章的第1~2节,第4章增加了3.7节以及第6节,其内容部分取自原版第6章第6节. 原版第6章除上述已保留外全部删除.此外,还删去了介绍混合有限元方法的内容. 此次再版是在清华大学出版社刘颖博士提议、推动和支持下完成的. 我们深表感谢. 陆金甫关治
1引论1
2关于偏微分方程的一些基本概念2
2.1几个典型方程2
2.2定解问题5
2.3二阶方程5
2.4一阶方程组8
3Fourier变换和复数矩阵10
3.1Fourier变换10
3.2复数矩阵12
第2章有限差分方法的基本概念13
1有限差分格式13
1.1网格剖分13
1.2用Taylor级数展开方法建立差分格式14
1.3积分方法17
1.4隐式差分格式18
2有限差分格式的相容性、收敛性及稳定性19
2.1有限差分格式的截断误差19
2.2有限差分格式的相容性22
2.3有限差分格式的收敛性23
2.4有限差分格式的稳定性25
2.5Lax等价定理Lax等价定理27
3研究有限差分格式稳定性的Fourier方法Fourier方法28
3.1Fourier方法28
3.2判别准则31
3.3例子34
4研究有限差分格式稳定性的其他方法37
4.1Hirt启示性方法37
4.2直接方法38
4.3能量不等式方法能量不等式方法42
习题43
第3章双曲型方程的有限差分方法45
1一阶线性常系数双曲型方程45
1.1迎风格式迎风格式45
1.2LaxFriedrichs格式46
1.3LaxWendroff格式48
1.4CourantFriedrichsLewy条件CourantFriedrichsLewy条件49
1.5利用偏微分方程的特征线来构造有限差分格式50
1.6蛙跳格式蛙跳格式52
1.7数值例子53
2一阶线性常系数方程组54
2.1La... 查看详情